
cmlmcase: Code Magus Cases Guide and
Reference Version 3

CML00114-00

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road

Oxford, OX2 6EY, United Kingdom
www.codemagus.com

Copyright c© 2014 by Code Magus Limited
All rights reserved

November 3, 2016

CONTENTS CONTENTS

Contents
1 Introduction 2

2 Command line parameters 3

3 Processing 5

4 Tokens 6

5 Lexical Elements, Syntax and Semantics 8
5.1 Expression Overview . 8
5.2 Expression Grammar . 8

5.2.1 Lexical Elements . 8
5.2.2 Syntactical Elements . 10

5.3 Built-in Functions . 15
5.3.1 SysStrLen, strlen, length . 15
5.3.2 SysSubStr, substr . 15
5.3.3 SysString, string . 16
5.3.4 SysNumber, number . 16
5.3.5 SysStrCat, strcat . 17
5.3.6 SysStrStr, strstr . 17
5.3.7 SysStrSpn, strspn . 17
5.3.8 SysStrCspn, strcspn . 18
5.3.9 SysStrPadRight, padright . 18
5.3.10 SysStrPadLeft, padleft . 19
5.3.11 SysFmtCurrTime, strftimecurr 19
5.3.12 SysTime, time2epoch . 20
5.3.13 SysStrFTime, strftime . 21
5.3.14 SysInTable, intable . 22
5.3.15 SysStrCondPack, condpack 23

6 Examples 25
6.1 Copybook . 25
6.2 Objtypes . 25
6.3 Subtypes . 27
6.4 Data . 28
6.5 CSV Input File . 29
6.6 Command Line . 29
6.7 The Output File . 30

Code Magus Limited 1 CML00114-00

1 INTRODUCTION

1 Introduction

Code Magus Cases allows artefacts bridging informal and formal entity descriptions to
be used to select information and populate data sources used by other tools. Typically
this data is to select entities for testing which satisfy specific conditions required by the
test scenario.

Cases is often used within the Eresia Framework and fills the gap between content au-
tomation and test automation.

Although Cases is used with the Eresia Framework, it can be used with most testing
tools that can represent their scenario data as text or as the contents of a spreadsheet, or
as a part of the manual test effort. The only additional dependency on technology is the
hosting operating system and its file system.

Code Magus Limited 2 CML00114-00

2 COMMAND LINE PARAMETERS

2 Command line parameters

Usage: cmlmcase [OPTION...]
-i, --text-input=<template-file> Input template text file
-r, --text-input-mode={r|<open-mode>} Input template text file

open mode
-o, --text-output=<edited-file> Output edited text file
-w, --text-output-mode={w|<open-mode>} Output edited text file

open mode
-d, --data-file=<access>(<object>[,<options>]) Scenario candidate data

file: Recio open spec
-t, --objtypes-name=<objtype-name> Object types name used to

describe scenarios
-s, --maximum-scenarios-per-type={1|<count>} Maximum number of scenarios

to collect for each type
-c, --charset={ascii|ebcdic} Default character set for

character data
-e, --endian={big|little} Default binary data endian
-b, --segment-tag={|<tag>} Name of segment to which

editing must be restricted
-v, --verbose Verbose output for problem

determination

Help options
-?, --help Show this help message
--usage Display brief usage message

where:

• -i, --text-input=<template-file>
The input/template-file over which cases will be applied

• -r, --text-input-mode={r|<open-mode>}
The mode of the text input file

• -o, --text-output=<edited-file>
The output/edited-file containing the data supplied by cases

• -w, --text-output-mode={w|<open-mode>}
The mode of the text output file

• -d, --data-file=<access>(<object>[,<options>])

• -t, --objtypes-name=<objtype-name>
Name of objtypes member for buffer typing

• -s, --maximum-scenarios-per-type={1|<count>}
Maximum scenarios to which cases will be applied per object type

• -c, --charset={ascii|ebcdic}
Default character set for character data

• -e, --endian={big|little}
Default binary data endian

Code Magus Limited 3 CML00114-00

2 COMMAND LINE PARAMETERS

• -b, --segment-tag={|<tag>}
Tag of segment which should be edited

• -v, --verbose
List symbol table and parsed copybooks and produce verbose run time messages
during processing.

Code Magus Limited 4 CML00114-00

3 PROCESSING

3 Processing

This program edits scenario data into a text file, which is very often a CSV file but for
very wide cases the format should be the Code Magus export-excel format (or xxl) as
produced by xlimpexp. These formats allow the text file after substitution to be reloaded
into Excel and to be read by the corresponding Eresia portal; some other test tool or as
input to a manual testing effort.

The input file, presented as text, is configured to select objects (records matching types)
by placing certain tokens into the input file as placeholders for information from those
objects.

As a consequence of running the tool over the input file, an updated text file will be
written out in which elements belonging to particular scenario cases have been replaced.

The tokens available for use as place-holders are described in section 4 on page 6.

Additional input files include a file containing all the candidate case data as well as
an object types member which defines and names all the scenario cases as defined by
individual (sub)types.

A parameter specifies how many objects should match each of the given types. When
the required number of types have been satisfied, or the end of the input file has been
reached, the processing of the text input and output files begins.

A parameter indicates whether the text file to be edited contains tags to delimit editable
segments of the text file. This parameter also supplies the value of the tag that must
match the segment of the text file which will be edited. All other segments and the rest
of the text file will be copied from the input to the output.

Code Magus Limited 5 CML00114-00

4 TOKENS

4 Tokens

Tokens defined within the Code Magus Cases tool act as placeholders for information
matching certain scenarios/business rules/cases. This information, when matched to a
particular scenarios/business rules/cases is substituted in the output file as a result of
running the tool.

The following tokens are defined:

• $$CASE-CONTEXT

• $$CASE-VALUE

• $$CASE-USABLE

• $$CASE-TITLE

• $$CASE-START-TAG

• $$CASE-END-TAG

• $$CASE-EXP

Some tokens can be followed by a parameter in parenthesis, and for some tokens this is
mandatory and sometimes it is optional.

• $$CASE-CONTEXT
Establish an object matching a type as the current context. This token is followed
by a mandatory parameter which must be the name of a type (or subtype). The
next object matching that type is established as the current context, but the token
and parameter are echoed back to the output text file.

• $$CASE-VALUE
Insert a value from the current object into the output text: This token is used to
select a a data item of the object currently in context and to replace the token
with that data item’s value in the output text. This token requires a parameter, the
value of which is expected to be the fully qualified name of the data item. If there
is currently no object in context or an error occurs during the processing of this
token then the token and its parameter are copied to the output text.

• $$CASE-USABLE
Test whether a case is usable or not. This token is used to indicate where the one
the words ”EXECUTABLE” or ”INCOMPLETE” (in upper-case and without the
quotation marks) should be placed in the output text. The token itself is not copied
to the output text. The word ”EXECUTABLE” is placed in the output text if there
is a current object in context indicating that the last ”$$CASES-CONTEXT”, for
example, found and established a matching object as the current context. The
word ”INCOMPLETE” is placed in the output text if there is no current object
in context. This would be the case before the first occurrence of, for example, a

Code Magus Limited 6 CML00114-00

4 TOKENS

”$$CASE-CONTEXT” token, or as because the last attempt to establish a context
failed to find a match.

The ”$$CASE-USABLE” can be followed by an optional parameter. This param-
eter is expected to be a type name. When this form is used an attempt it attempts
to establish the next object of the named type as the current context and, depend-
ing on the success of this operation, replaces the token and parameter with the
words ”EXECUTABLE” or ”INCOMPLETE” as described above. This option
is a short-hand for a ”$$CASE-CONTEXT” token and parameter followed by a
”$$CASE-USABLE” token with only the effect of the latter being copied to the
output text.

• $$CASE-TITLE
Copy current context’s title to output text. This token is used to replace, in the
output text, the title of the current type in context. If no such object is in context
then the token is copied to the output text without substitution.

• $$CASE-EXP
This token allows replacement text to allow any expression over the matching
buffers. Currently only one buffer is source for evaluating expressions and will
be the last buffer introduced when defining multiple aliases or the current buffer
matching the scenario when this is not the case. The expression evaluation syntax
is explained fully in section 5.

Code Magus Limited 7 CML00114-00

5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

5 Lexical Elements, Syntax and Semantics

5.1 Expression Overview

The lexical elements of an expression are the variables, literals, operators and other
character symbols used to form an expression. These lexical elements or tokens are
separated by white spaces. White spaces include sequences of the space character, new-
line character, the tab character and the linefeed character and their only function is to
separate or delimit the tokens.

The lexical elements are often single characters having their own apparent meaning,
but some are grouped together to form a word having a specific meaning. Included or
associated with each token may be an attribute value.

An expression, made up of the constituent tokens into the syntax and semantics of the
grammar, is then validated and evaluated by the expression evaluation library. The
evaluation of an expression produces a value that can then be used within the context of
the grammar of the specific Code Magus product within which it is specified.

Examples of expressions are:

1. 3+4

2. balance + 100

3. (account.balance >= 2000)

4. where (account.balance = 0)

5. where (account.balance < 0) and
(account.overdraft_facility = ’Y’)

6. SysString(account.balance)

5.2 Expression Grammar

5.2.1 Lexical Elements

The base elements are Literals and Identifiers.

• Numeric Literals

A Numeric literal is made up from an optional plus or minus sign followed by one
or more digits and optionally followed by a point and one or more digits.

Code Magus Limited 8 CML00114-00

5.2 Expression Grammar5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

Number Literal

³

µ- +
¶
µ

³
´

µ- -
¶
µ

³
´

¶

´

´

- 0-9
¶
µ

³
´

¶

µ

³

´

³

µ- .
¶
µ

³
´

- 0-9
¶
µ

³
´

¶

µ

³

´

¶

´

-

• String Literals

String literals are made up from

– Any number of printable characters, except the enclosing character and a
newline, enclosed in either single or double quotes.

– An even number of hexadecimal digits enclosed in either single or double
quotes and prefixed with a lower or upper case X.

String Literal

- "
¶
µ

³
´
- Printable characters except "

¶
µ

³
´
- "

¶
µ

³
´

³

µ- ’
¶
µ

³
´
- Printable characters except ’

¶
µ

³
´
- ’

¶
µ

³
´

¶

´

-

Hexadecimal Literal

- X
¶
µ

³
´

³

µ- x
¶
µ

³
´

¶

´

- "
¶
µ

³
´

- 0-9a-fA-F
¶
µ

³
´
- 0-9a-fA-F

¶
µ

³
´

¶

µ

³

´

- "
¶
µ

³
´

³

µ- ’
¶
µ

³
´

- 0-9a-fA-F
¶
µ

³
´
- 0-9a-fA-F

¶
µ

³
´

¶

µ

³

´

- ’
¶
µ

³
´

¶

´

-

• Identifiers

An identifier is used for both variable and function names. An identifier must
conform to:

– A lower or upper case alphabetic character followed by any number of un-
derscores, decimal digits and upper and lower case alphabetic characters.

– One or more decimal digits followed by an underscore and the above rule.

Code Magus Limited 9 CML00114-00

5.2 Expression Grammar5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

Identifier

³

µ - 0-9
¶
µ

³
´

¶

µ

³

´

-
¶
µ

³
´

¶

´

- a-zA-Z
¶
µ

³
´

- 0-9a-zA-Z
¶
µ

³
´

¶

µ

³

´

-

5.2.2 Syntactical Elements

Expressions may themselves be used as syntactical elements when forming a compound
expression.

The complete syntax of a compound expression is explained in the following sections
starting with the compound expression and working down to the lowest level syntactic
element.

CompoundExpression

- Expression -

Code Magus Limited 10 CML00114-00

5.2 Expression Grammar5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

Expression

- Expression - +
¶
µ

³
´
- Expression³

µ- Expression - -
¶
µ

³
´
- Expression

µ- Expression - *
¶
µ

³
´
- Expression

µ- Expression - /
¶
µ

³
´
- Expression

µ- Expression - mod
¶
µ

³
´
- Expression

µ- Expression - and
¶
µ

³
´
- Expression

µ- Expression - or
¶
µ

³
´
- Expression

µ- Expression - <
¶
µ

³
´
- Expression

µ- Expression - >
¶
µ

³
´
- Expression

µ- Expression - =
¶
µ

³
´
- Expression

µ- Expression - <>
¶
µ

³
´
- Expression

µ- Expression - >=
¶
µ

³
´
- Expression

µ- Expression - <=
¶
µ

³
´
- Expression

µ- Expression - like
¶
µ

³
´
- HomeString

µ- -
¶
µ

³
´
- Expression

µ- +
¶
µ

³
´
- Expression

µ- not
¶
µ

³
´
- Expression

µ- unique
¶
µ

³
´
- Expression

µ- Expression - unless
¶
µ

³
´
- Expression

µ- Primary

¶

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

-

The unless-operator conditionally returns the value of the right-hand operand, unless
there is an error evaluating the right-hand operand. In the case where the right-hand
operand fails to evaluate to a proper value, the value of the left-hand operand is returned

Code Magus Limited 11 CML00114-00

5.2 Expression Grammar5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

instead. The left-hand operand is always evaluated before the right-hand operand. If
the left-hand operand fails to evaluate to a proper value, then the result of the unless-
operator is a failure.

Primary

- Literal³

µ- Variable

µ- (
¶
µ

³
´
- Expression -)

¶
µ

³
´

µ- Function - (
¶
µ

³
´
- ExpressionList -)

¶
µ

³
´

µ- ifelse
¶
µ

³
´
- (

¶
µ

³
´
- Expression - ,

¶
µ

³
´
- Expression - ,

¶
µ

³
´
- Expression -)

¶
µ

³
´

¶

´

´

´

´

-

As a terminal in the syntax structure an expression or Primary is either a Literal or
a Variable, an Expression enclosed in parenthesis, a Function call reference, or the
conditional evaluation operator ifelse. A Literal may be a String Literal or a Number
Literal as described in Section 5.2.1 on page 8.

Where required by the encoding indicated or defaulted, characters representing the at-
tribute value of a string are changed to an alternate character set if the required character
set is not the same as the home character set being used. For example, on a machine in
which the characters are naturally represented using the EBCDIC character set encod-
ing (such as code page of 1047 or Latin 1/Open Systems), if the data being processed
is from a machine in which the characters are naturally represented using the ASCII
character set (such as ISO8859-1), then the characters in the String literal (assumed to
be represented in EBCDIC) will be translated to their corresponding ASCII characters
for processing. This does not apply to String literals that were represented as a sequence
of hexadecimal digits.

Both a Function (see Section 5.2.2 on page 14) and an Expression are made up of sub-
expressions, although eventually even they must terminate and resolve to a value.

A HomeString is a String Literal that may not be represented as a sequence of hexadec-
imal digits, but in which the encoding is left in the natural encoding of the machine
processing the data; that is the machine on which the expression string is being com-
piled. This is required for the right-hand operand of the like operator as this operator
translates the value of the left-hand operand into the local encoding when performing
pattern matching.

Operators, variables and functions are described in more detail below:

• Operators

In the context of the expression evaluation library, an operator is a symbol that

Code Magus Limited 12 CML00114-00

5.2 Expression Grammar5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

operates on or causes an action to be be performed on the constants and variables
adjacent to it. An operator is either

– Monadic
A monadic operator only operates on one value and usually employ either
prefix or postfix notation in that they either occur before or after the value
they operate on. The expression evaluation library uses only prefix monadic
operators.

– Dyadic
Dyadic operators operate on two values and employ infix notation in that
they operate on the the values that immediately precede and follow the op-
erator.

All operators return a value of a defined type which is the result of the computa-
tion. The type returned by an operator must be semantically consistent within the
context of the rest of the expression and the grammar it may be embedded in.

Table 1 on page 13 lists the allowed operators, their precedence, associativity,
arity (whether or not they are monadic or dyadic) and Type.

Operator Precedence Associativity Arity Type
<> 1 left dyadic Relational
>= 1 left dyadic Relational
<= 1 left dyadic Relational
= 1 left dyadic Relational
> 1 left dyadic Relational
< 1 left dyadic Relational
+ 2 left dyadic Arithmetic
- 2 left dyadic Arithmetic
or 2 left dyadic Boolean
* 3 left dyadic Arithmetic
/ 3 left dyadic Arithmetic

div 3 left dyadic Arithmetic
and 3 left dyadic Boolean
mod 3 left dyadic Arithmetic
- 4 left monadic Arithmetic

not 4 left monadic Boolean
unique 4 left monadic boolean

Table 1: Operators: Precedence, Associativity, Arity and Type

• Variables

A variable is the name of a storage location that holds a value. Simply this name
is just an Identifier, but may be more than one level or node including an index.

Code Magus Limited 13 CML00114-00

5.2 Expression Grammar5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

Variable

- Variable Node³

µ- IndexedString

µ- Variable - .
¶
µ

³
´
- Variable Node³

µ- :
¶
µ

³
´
- Variable Node

¶

´

¶

´

´

-

Variable Node

- Identifier ³

µ- [
¶
µ

³
´
- Number -]

¶
µ

³
´

¶

´

-

IndexedString

- [
¶
µ

³
´
- String -]

¶
µ

³
´

-

Examples of variable names are:

– Address - A single node variable with no indexing.

– Customer.Address - A two node variable.

– Customer.Address[1] - A two node variable where the Address por-
tion of the variable is the first of an array of items. Here this may be the first
line of an address.

– Customer[3].Address[1] - A two node variable that specifies the
third entry of the Customer array and the first entry of the Address array
within that Customer.

– Customer.Contact.HomePhone - A three node variable.

• Functions

A function is a special type of operator. It is specified by the function name, an
identifier, followed by a comma separated list of arguments enclosed in parenthe-
ses.

Function

- Identifier - (
¶
µ

³
´
- ExpressionList -)

¶
µ

³
´

-

where an expression list is defined as

Code Magus Limited 14 CML00114-00

5.3 Built-in Functions 5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

ExpressionList

- Expression¶

µ ,
¶
µ

³
´
¾

³

´

-

The function call is replaced with the result of the call and the result type must
be semantically consistent within the context of the rest of the expression and the
grammar it may be embedded in.

5.3 Built-in Functions

Functions for expression evaluation can be supplied by the application that uses it and
as such has a rich set of plug in functions that can not be documented here. However
there are functions that are common to all data processing and these are supplied by the
expression evaluation library and are described below.

5.3.1 SysStrLen, strlen, length

• Synopsis

– SysStrLen(string)

– strlen(string)

– length(string)

• Parameters

– Parameter 1 type: String.

• Description

The SysStrLne function (aliasses strlen, length) returns the number of
characters in the string supplied as the first argument.

5.3.2 SysSubStr, substr

• Synopsis

– SysSubStr(string,start,length)

– substr(string,start,length)

• Parameters

– Parameter 1 type: String.

Code Magus Limited 15 CML00114-00

5.3 Built-in Functions 5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

– Parameter 2 type: Number.

– Parameter 3 type: Number.

– Return type: String.

• Description

The SysSubStr function (alias substr) returns a substring of the given string
from start for length characters or the remainder of string whichever is the short-
est.

The start must be greater than zero and the length must be zero or greater. If the
start position is past the end of the string then a NULL string is returned.

5.3.3 SysString, string

• Synopsis

– SysString(number)

– string(number)

• Parameters

– Parameter 1 type: Number.

– Return type: String.

• Description The SysString function (alias string) returns the value of num-
ber as a string.

5.3.4 SysNumber, number

• Synopsis

– SysNumber(string)

– number(string)

• Parameters

– Parameter 1 type: String.

– Return type: Number.

• Description The SysNumber function (alias number) returns a number equiv-
alent to the value of string.

Code Magus Limited 16 CML00114-00

5.3 Built-in Functions 5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

5.3.5 SysStrCat, strcat

• Synopsis

– SysStrCat(first,second)

– strcat(first,second)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: String.

• Description The SysStrCat function (alias strcat) returns a String which is
the concatenation of the two input strings first and second.

5.3.6 SysStrStr, strstr

• Synopsis

– SysStrStr(haystack,needle)

– strstr(haystack,needle)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: Number.

• Description The SysStrStr function (alias strstr) returns the start position
of needle within haystack. If needle does not occur in haystack then
zero is returned, otherwise the position (origin 1) is returned.

5.3.7 SysStrSpn, strspn

• Synopsis

– SysStrSpn(string,accept)

– strspn(string,accept)

• Parameters

– Parameter 1 type: String.

Code Magus Limited 17 CML00114-00

5.3 Built-in Functions 5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

– Parameter 2 type: String.

– Return type: Number.

• Description The SysStrSpn function (alias strspn) returns the number of
characters (bytes) in the initial segment of string which consist only of char-
acters from accept.

5.3.8 SysStrCspn, strcspn

• Synopsis

– SysStrCspn(string,reject)

– strcspn(string,reject)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: Number.

• Description The SysStrCspn function (alias strcspn) returns the number
of characters (bytes) in the initial segment of string which do not match any
character from reject.

5.3.9 SysStrPadRight, padright

• Synopsis

– SysStrPadRight(string,length,pad)

– padright(string,length,pad)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: Number.

– Parameter 3 type: String. Although the type is String, only the first character
is used as the pad character.

– Return type: String.

• Description The SysStrPadRight function (alias padright) returns a string
whose length is length and:

Code Magus Limited 18 CML00114-00

5.3 Built-in Functions 5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

– if length is greater than the length of string, is string padded on the
right with the pad character

– if length is less than the length of string, is string truncated from
the right to length.

– if length is equal to the length of string, is string.

5.3.10 SysStrPadLeft, padleft

• Synopsis

– SysStrPadLeft(string,length,pad)

– padleft(string,length,pad)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: Number.

– Parameter 3 type: String. Although the type is String, only the first character
is used as the pad character.

– Return type: String.

• Description The SysStrPadLeft function (alias padleft) returns a string
whose length is length and:

– if length is greater than the length of string, is string padded on the
left with the pad character

– if length is less than the length of string, is string truncated from
the left to length.

– if length is equal to the length of string, is string.

5.3.11 SysFmtCurrTime, strftimecurr

• Synopsis

– SysFmtCurrTime(format)

– strftimecurr(format)

• Parameters

– Parameter 1 type: String.

– Return type: String.

Code Magus Limited 19 CML00114-00

5.3 Built-in Functions 5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

• Description The SysFmtCurrTime function (alias strftimecurr) returns
a string that represents the current time as formatted according to format using
the C run-time strftime() function. Common values for format are:

– %c - The preferred date and time representation for the current locale.

– %d - The day of the month as a decimal number (range 01 to 31).

– %F - Equivalent to %Y-%m-%d (the ISO 8601 date format).

– %H - The hour as a decimal number using a 24-hour clock (range 00 to 23).

– %j - The day of the year as a decimal number (range 001 to 366).

– %m - The month as a decimal number (range 01 to 12).

– %M - The minute as a decimal number (range 00 to 59).

– %s - The number of seconds since the Epoch, 1970-01-01 00:00:00

– %S - The second as a decimal number (range 00 to 60, allows for leap sec-
onds).

– %T - The time in 24-hour notation (%H:%M:%S).

– %y - The year as a decimal number without a century (range 00 to 99).

– %Y - The year as a decimal number including the century.

– %% - A literal ’%’ character.

– Any other characters, not specified by strftime(), are copied verbatim
from format to the result string.

5.3.12 SysTime, time2epoch

• Synopsis

– SysTime(datetime,format)

– time2epoch(datetime,format)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String. Default “%Y%m%d”.

– Return type: Number.

• Description The SysTime function (alias time2epoch) returns the number
seconds since the Epoch calculated from datetime under the specification of
format.

Code Magus Limited 20 CML00114-00

5.3 Built-in Functions 5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

The seconds since the Epoch, when interpreted as an absolute time value, repre-
sents the number of seconds elapsed since the Epoch, 1970-01-01 00:00:00
+0000 (UTC).

datetime must be a string representation of a date and / or time and format
must be a date format string that exactly describes datetime using the format
characters as specified and used by the C function strptime().

Common options for the format are:

– %% - The % character.

– %c - The date and time representation for the current locale.

– %C - The century number (0-99).

– %d or %e - The day of month (1-31).

– %H - The hour (0-23).

– %I - The hour on a 12-hour clock (1-12).

– %j - The day number in the year (1-366).

– %m - The month number (1-12).

– %M - The minute (0-59).

– %p - The locale’s equivalent of AM or PM. (Note: there may be none.)

– %S - The second (0-60; 60 may occur for leap seconds; earlier also 61 was
allowed).

– %T - Equivalent to %H:%M:%S.

– %x - The date, using the locale’s date format.

– %X - The time, using the locale’s time format.

– %y - The year within century (0-99). When a century is not otherwise spec-
ified, values in the range 69-99 refer to years in the twentieth century (1969-
1999); values in the range 00-68 refer to years in the twenty-first century
(2000-2068).

– %Y - The year, including century (for example, 1991).

5.3.13 SysStrFTime, strftime

• Synopsis

– SysStrFTime(seconds,format)

– strftime(seconds,format)

Code Magus Limited 21 CML00114-00

5.3 Built-in Functions 5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

• Parameters

– Parameter 1 type: Number.

– Parameter 2 type: String.

– Return type: String.

• Description The SysStrFTime function (alias strftime) returns a string
date time representation of seconds formatted according to format as de-
scribed in the C runtime function strftime().

seconds is the number of seconds since the Epoch, which when interpreted as
an absolute time value, represents the number of seconds elapsed since the Epoch,
1970-01-01 00:00:00 +0000 (UTC).

format must be a date format string used to format the returned date time string.
For common values of format see section 5.3.11 on page 20

5.3.14 SysInTable, intable

• Synopsis

– SysInTable(table,search)

– intable(table,search)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: Boolean.

• Description

The SysInTable function (alias intable) returns a boolean TRUE if the
value of search is found in the table of items table, otherwise it returns a
boolean FALSE.

The value of table may be either the name of a text file in which each line is
one element of the table, or a comma (,) or semi-colon (;) delimited string of the
element values of the table.

• Examples

– SysInTable(”C:\customerNames.txt”,”Smith”) This will test wether the name
”Smith” occurs in the list of elements in the file C:\customerNames.txt.

Code Magus Limited 22 CML00114-00

5.3 Built-in Functions 5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

– SysInTable(”/tmp/customerNames.txt”,Record.Surname) This will test whether
the name identified by the object types[1] field Record.Surname occurs
in the list of elements in the file /tmp/customerNames.txt.

– SysInTable(”Smith,Jones,Right”,Record.Surname) This will test whether the
name identified by the object types[1] field Record.Surname occurs in
the list of elements in the comma separated list specified by the first argu-
ment.

5.3.15 SysStrCondPack, condpack

• Synopsis

– SysStrCondPack(String,String)

– condpack(String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: String.

• Description

The SysStrCondPack function (alias condpack) returns a string which is
conditionally formed by packing the string passed in the first parameter using
the second parameter as a possible replacement character. If the first parameter
matches the regular expression X"[0-9][A-F][a-f]" then the hexadecimal
characters are packed into the corresponding encoding character set (ASCII or
EBCDIC) characters. If the second parameter does not have a zero length, then the
first character of this parameter string is used to replace all the non-graphic/non-
printable characters of the packed character string. When the second parameter
string has a zero length, then the character ”?” is used as the replacement charac-
ter for non-graphic/non-printable characters in the return string.

If the first parameter string does not match the regular expression then the string
is considered to already be packed. In this case, the string is still checked if the
second parameter length is greater than one and the non-graphic/non-printable
characters are replaced by the first character of the second parameter string. When
the second parameter string has a zero length, then the character ”?” is used as
the replacement character for non-graphic/non-printable characters in the return
string.

• Examples

Code Magus Limited 23 CML00114-00

5.3 Built-in Functions 5 LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

– condpack(’X"414141"’,"?") on an ASCII based machine returns
the string AAA.

– condpack(’X"4141410000"’,"?") on an ASCII based machine re-
turns the string AAA??.

– condpack("4141410000","?") on an ASCII or EBCDIC based ma-
chine returns the string 4141410000.

Code Magus Limited 24 CML00114-00

6 EXAMPLES

6 Examples

The example detailed below lists all the components required to apply the Code Magus
Cases tool to a CSV file and generate the necessary output CSV file containing the
substituted data.

The output CSV file would typically serve as input to an automated test cycle run by the
Eresia Framework.

6.1 Copybook

The example copybook describes a set of fictional account data that could potentially
apply to a wide range of industries.

01 ACCOUNTS.
05 REC-TYPE PIC X(4).
05 ACCOUNT-NUM PIC 9(8).
05 ACCOUNT-STAT PIC X(3).
05 ACCOUNT-HOLDER PIC X(20).
05 STATUS-CODE PIC X(3) OCCURS 3.

6.2 Objtypes

The types definition listed below is a very general view of the data described by the
fictional account data. In other words the types file could potentially have contained a
more in-depth view of the data and split the data into several types.

However, the aim of the example is make use of subtypes, as these translate well into
business rules and are commonly used with the Code Magus Cases tool. They also
provide a mechanism for extending existing types files without the need to update or
duplicate existing objtypes artefacts.

To be clear the Code Magus Cases tool can make use of either objtypes or subtypes.

The choice will largely depend on existing metadata or how one chooses to separate out
the business rules/cases.

For the purposes of the example subtypes will be the used but the parent type file from
which the subtypes are derived is shown for the sake of completeness.

path ${HOME}"/testdata/copybooks/%s.cpy";
options ascii, endian_little, omit_fillers, extended_arith;

type TEST_ACCOUNTS
title "Test ACCOUNT"

Code Magus Limited 25 CML00114-00

6.2 Objtypes 6 EXAMPLES

book TESTACCT
map ACCOUNTS

include ACCOUNTS
;

Code Magus Limited 26 CML00114-00

6.3 Subtypes 6 EXAMPLES

6.3 Subtypes

The subtypes for the fictional account data may describe some business rule or data
condition which is of interest. The subtypes used in the example are listed below.

path type ${HOME}"/testdata/objtypes/%s.objtypes";
path book ${HOME}"/testdata/copybooks/%s.cpy";

options ascii, endian_little, omit_fillers, extended_arith;

subtype AccAAA of cmlmcase_test_two:TEST_ACCOUNTS
title "Account of type AAA"
when (ACCOUNTS.ACCOUNT_STAT = "AAA");

subtype AccAAB of cmlmcase_test_two:TEST_ACCOUNTS
title "Account of type AAB"
when (ACCOUNTS.ACCOUNT_STAT = "AAB");

subtype AccAAC of cmlmcase_test_two:TEST_ACCOUNTS
title "Account of type AAB"
when (ACCOUNTS.ACCOUNT_STAT = "AAC");

Code Magus Limited 27 CML00114-00

6.4 Data 6 EXAMPLES

6.4 Data

The fictional account data that will be applied to the example are listed below.

YYYY10129390AAAMRS JULIE ANN HARRIS777555111
XXXX10538423AAAMR IGNATIOUS PETERRS777555111
YYYY10832346AABDR RAYMOND A BARROSO777555111
YYYY10458567AAAPROF EDMUND CHAMBERS777555111
XXXX10438585AACLORD YURI GARGARISON777555111
YYYY10229884AAAMR DONALD DECIMALISE777555111
XXXX10997454AAAPROF ALBERT EINSTEIN777555111
XXXX12304832AABMRS MARGARET THATCHR777555111
YYYY14343536AAAMR EDWARD SCISSORHND777555111
YYYY10323636AACMR NICOLAS SARCOZIES777555111
YYYY10129903AAAMR DAVID C. CAMERSON777555111
XXXX10538234AAAMR BARRACUS OBAMMSON777555111
YYYY10832463AABMRS MARGERIN SIMPSON777555111
YYYY10458675AAAMR ELVIS GRACIA LEEU777555111
XXXX10438855AACMRS EDWINA EDWIN ELF777555111
YYYY10229848AAADR TIGERRS G WOODING777555111
XXXX10997544AAAMR ERNESTE RAMERSONG777555111
XXXX12304328AABMR LEOPOLDO GAMBLERS777555111
YYYY14343365AAAMRS MARCI PLATINO-LE777555111
YYYY10323366AACMR VICTOR MATTY FILD777555111
YYYY10193902AAAMRS MARTHA STEWARDES777555111
XXXX10584233AAAMRS NKOMBETHA NLAPPO777555111
YYYY10823463AABMR STEPHEN SPEELBERG777555111
YYYY10485675AAAMR DUEY DECIMALSYSTM777555111
XXXX10485853AACDR BEVERLY HILLS-LEE777555111
YYYY10298842AAAMRS LOVE-HEWITT ERIC777555111
XXXX10974549AAAMR PETER THE CHEATER777555111
XXXX12348320AABDR MONOPOLY THE GAME777555111
YYYY14335364AAAMR BARRONESS VON TRE777555111
YYYY10336362AACMR JONES ANDME SINGL777555111
YYYY10199032AAAMR AXL ROSIE-PARKERS777555111
XXXX10582343AAAMR STING ANTHEPOLICE777555111
YYYY10824633AABMR MIKE TYSON-PUNCHE777555111

Code Magus Limited 28 CML00114-00

6.5 CSV Input File 6 EXAMPLES

6.5 CSV Input File

The input file to the Code Magus Cases example will be the CSV file listed below. The
input file contains the tokens over which the account data will be substituted.

For the purposes of the example, a CSV file was chosen to demonstrate the concepts
necessary to understand and implement cases, however the choice was arbitrary and as
described in section 3, could also have been the Code Magus export-excel format (or
xxl) as produced by xlimpexp or some other form of textual data depending on the user
requirements.
TITLE OF PACKAGE,XYZAccountTester,,,
Test Cases (from row),6,,,
Test Cases (to row),15,,,
,,,,
STATUS OF SCENARIO, DESCRIPTION OF SCENARIO,CASE NAME,ACCOUNT_NUMBER,ACCOUNT_HOLDER
$$CASE-START(segment_one),,,,
$$CASE-CONTEXT(AccAAA)=$$CASE-USABLE;$$CASE-TITLE
$$CASE-USABLE(AccAAA),$$CASE-NAME,$$CASE-VALUE(ACCOUNTS.ACCOUNT_NUM),$$CASE-VALUE(ACCOUNTS.STATUS_CODE[1])
$$CASE-USABLE(AccAAC),$$CASE-NAME,$$CASE-EXP(SysSubStr(ACCOUNTS.ACCOUNT_HOLDER,1,10))END
$$CASE-USABLE(AccAAA),$$CASE-NAME,$$CASE-VALUE(ACCOUNTS.ACCOUNT_NUM),$$CASE-VALUE(ACCOUNTS.STATUS_CODE[1])
$$CASE-END,,,,
$$CASE-START(segment_two),,,,
$$CASE-CONTEXT(AccAAB)=$$CASE-USABLE;$$CASE-TITLE
$$CASE-USABLE(AccAAB),$$CASE-NAME,$$CASE-VALUE(ACCOUNTS.ACCOUNT_NUM),$$CASE-VALUE(ACCOUNTS.STATUS_CODE[1])
$$CASE-USABLE(AccAAC),$$CASE-NAME,$$CASE-EXP(SysSubStr(ACCOUNTS.ACCOUNT_HOLDER,1,10))END
$$CASE-USABLE(AccAAB),$$CASE-NAME,$$CASE-VALUE(ACCOUNTS.ACCOUNT_NUM),$$CASE-VALUE(ACCOUNTS.STATUS_CODE[1])
$$CASE-END,,,,
$$CASE-START(segment_three),,,,
$$CASE-CONTEXT(AccAAC)=$$CASE-USABLE;$$CASE-TITLE
$$CASE-USABLE(AccAAC),$$CASE-NAME,$$CASE-VALUE(ACCOUNTS.ACCOUNT_NUM),$$CASE-VALUE(ACCOUNTS.STATUS_CODE[1])
$$CASE-USABLE(AccAAC),$$CASE-NAME,$$CASE-VALUE(ACCOUNTS.ACCOUNT_NUM),$$CASE-VALUE(ACCOUNTS.STATUS_CODE[1])
$$CASE-USABLE(AccAAC),$$CASE-NAME,$$CASE-EXP(SysSubStr(ACCOUNTS.ACCOUNT_HOLDER,1,10))END
$$CASE-END,,,,

6.6 Command Line

The Code Magus Cases tool will be run on the command line and the account example
was generated by running the command below. This command should be entered on
one line to execute it; it is only formatted as below for readability.

cmlmcase -v -i input_files/CSVFILE_0003.csv
-o output_files/CMLMCASE_OUT_0004.csv
-d "text(input_files\DATAFILE_0008.txt,mode=r,texttype=UNIX)"
-t testdata/objtypes/cmlmcase_test_two_subtypes.objtypes -s 10

Code Magus Limited 29 CML00114-00

6.7 The Output File 6 EXAMPLES

6.7 The Output File

The output file will be generated as a result of running the tool with the required input
file and command line options. The output file contains all the necessary data substitu-
tions and would now be ready for use with the applicable testing tool.

TITLE OF PACKAGE,XYZAccountTester,,,
Test Cases (from row),6,,,
Test Cases (to row),15,,,
,,,,
STATUS OF SCENARIO, DESCRIPTION OF SCENARIO,CASE NAME,ACCOUNT_NUMBER,ACCOUNT_HOLDER
$$CASE-START(segment_one),,,,
$$CASE-CONTEXT(AccAAA)=EXECUTABLE;Account of type AAA//
EXECUTABLE,AccAAA,10538423,777
EXECUTABLE,AccAAC,LORD YURI
EXECUTABLE,AccAAA,10458567,777
$$CASE-END,,,,
$$CASE-START(segment_two),,,,
$$CASE-CONTEXT(AccAAB)=EXECUTABLE;Account of type AAB//
EXECUTABLE,AccAAB,12304832,777
EXECUTABLE,AccAAC,MR NICOLAS
EXECUTABLE,AccAAB,10832463,777
$$CASE-END,,,,
$$CASE-START(segment_three),,,,
$$CASE-CONTEXT(AccAAC)=EXECUTABLE;Account of type AAB//
EXECUTABLE,AccAAC,10323366,777
EXECUTABLE,AccAAC,10485853,777
EXECUTABLE,AccAAC,MR JONES A
$$CASE-END,,,,

Code Magus Limited 30 CML00114-00

REFERENCES REFERENCES

References

[1] objtypes: Configuring for Object Recognition, Generation and Manipulation. CML
Document CML00018-01, Code Magus Limited, July 2008. PDF.

Code Magus Limited 31 CML00114-00

http://www.codemagus.com/documents/objtpuref_CML0001801.pdf

	1 Introduction
	2 Command line parameters
	3 Processing
	4 Tokens
	5 Lexical Elements, Syntax and Semantics
	5.1 Expression Overview
	5.2 Expression Grammar
	5.2.1 Lexical Elements
	5.2.2 Syntactical Elements

	5.3 Built-in Functions
	5.3.1 SysStrLen, strlen, length
	5.3.2 SysSubStr, substr
	5.3.3 SysString, string
	5.3.4 SysNumber, number
	5.3.5 SysStrCat, strcat
	5.3.6 SysStrStr, strstr
	5.3.7 SysStrSpn, strspn
	5.3.8 SysStrCspn, strcspn
	5.3.9 SysStrPadRight, padright
	5.3.10 SysStrPadLeft, padleft
	5.3.11 SysFmtCurrTime, strftimecurr
	5.3.12 SysTime, time2epoch
	5.3.13 SysStrFTime, strftime
	5.3.14 SysInTable, intable
	5.3.15 SysStrCondPack, condpack

	6 Examples
	6.1 Copybook
	6.2 Objtypes
	6.3 Subtypes
	6.4 Data
	6.5 CSV Input File
	6.6 Command Line
	6.7 The Output File

