
Testing Tools: Landscape and Overview

CML00088-01

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road

Oxford, OX2 6EY, United Kingdom
www.codemagus.com

Copyright c⃝ 2014 by Code Magus Limited
All rights reserved

December 15, 2020

CONTENTS CONTENTS

Contents
1 Introduction 3

2 Modular Design 3

3 Functional Testing 5
3.1 Preconditions . 5
3.2 Test Execution . 5
3.3 Validation and Post-Conditions . 5
3.4 Functional Testing Tools . 11

4 Test Artefact Repository 14
4.1 Requirements . 14
4.2 Data Preparation and Preconditions . 16
4.3 Coverage . 17
4.4 Securing Data . 17

5 Non-Functional Testing Tools 19

6 Access Methods 25
6.1 Supplied Access Methods . 25

7 Network Control Programs 29

8 Meta-Data 30

9 Data Manipulation/Management Tools 31
9.1 Overview . 31
9.2 File Tools Suite . 31
9.3 Cross Platform Copy . 33
9.4 Report Compare Utility . 34
9.5 Open System Sort . 34

10 Services 36

11 Parameterisation Schemes 38
11.1 Application Parameters . 38
11.2 Structured Environment Variables . 38

12 Monitoring Non-Functional testing 39

Code Magus Limited 1 CML00088-01

LIST OF FIGURES LIST OF TABLES

List of Figures
1 Schematic of Generic System Under Test Detailing Points of Interaction 7
2 Schematic of Abstract System Under Test 8
3 Schematic of Time Line of System Under Test 9
4 Schematic of Time Line of System Under Test 10
5 Tools and Components in the Execution of Functional Testing 15
6 Orkhestra Components for Driving Non-Functional Testing 20
7 Orkhestra Configuration for Non-Functional Testing 21
8 Orkhestra Configuration in Relation to Components of the System Un-

der Test . 22
9 Schematic of Generic System Under Test Detailing Points of Interaction 24

List of Tables
1 Functional Testing Tools . 13
2 Access Methods . 28
3 Supplied Network Control Programs 29
4 File Tools Suite Components . 33
5 Bespoke solutions . 37
6 Metric Probes . 40

Code Magus Limited 2 CML00088-01

2 MODULAR DESIGN

1 Introduction

This document sketches out areas in which the Code Magus test tools operate, and de-
scribes the landscape of the tools. The discussion covers the requirements of functional
and non-functional testing, including the components that deal with data and precon-
ditions around this style of testing. Functional testing includes coverage of tools that
perform both on-line (as in Eresia) and offline (as in Verify) testing.

2 Modular Design

The Code Magus tools are modular in architecture and construction. As a result of this
there is a considerable degree of orthogonality in the design which leads to significant
reuse in components. There are a number of components which are common across
all types of testing and data tools. When a tool requires the services of one of these
components it gains access to that function through an API. There could be many im-
plementations of these API’s each providing the required function in a manner dictated
by the circumstances, but largely independent of the details within the caller of the API.
For example, there is an API designed to give the functional and non-functional tools
access to a communications transport layer. In most cases, the specific transport layer
has no bearing on the user of the API. Another example is reading and writing data by
the scripts and tools. In this case, the actual access method has no bearing on the test
script details except at the point of binding to the access method through the API.

The success of these API’s and this design is highlighted by the fact that the bindings
can be done at execution time (of the tools and scripts), and that from the point of view
of the tool or script using the interface, the behaviour is independent of the specific
bindings (provided that they have been specified correctly and appropriately).

There is an API which is responsible for presenting a generic network interface to the
tools and scripts, and details of this API are not dependant on the exact transport layer
made available through an electable module, thus the means by which, for example,
MQ messages are sent and received or general TCP/IP messages are sent and received
is achieved through the same API. In the case of the API used to send and receive
messages, the implementation modules of the API are called Network Control Programs
(NCP).

The interface through which all the tools and scripts read and write record streams to
files and read the result sets of queries is also all done through an API. The binding to
the actual module used for reading and writing files, and any parameters the module
might require are specified to the API by means of an open specification string. The
module that implements the API for a specific set of circumstances is called an Access
Method.

Code Magus Limited 3 CML00088-01

2 MODULAR DESIGN

There are other elements of the design which portray a modular design. The script en-
gine we employ for functional testing allows solutions to be built from various modules
and components. Typically, execution starts by driving a package script, responsible
for orchestrating the execution of various usecase scripts in order to complete a facet
of functional testing. These script artefacts can reside in different structures, are bound
to upon start of execution and are located by means of an internal machine independent
naming scheme, together with an external machine dependant binding scheme. This al-
lows scripts that are developed on one platform within one context to be used on another
platform in a different context.

In addition, there are API’s which allow custom code or third party code to be bound to
and called from within the scripts, and the resultant components form part of the same
naming and binding scheme that the other script components use.

In all cases, where it might be beneficial for the customer or a third party to supply
implementations of these interfaces, the API details and sample code is supplied.

Code Magus Limited 4 CML00088-01

3 FUNCTIONAL TESTING

3 Functional Testing

To set the scene in which the Code Magus functional tools landscape can be described,
it is useful to consider the nature of the activities required to accomplish this testing.

3.1 Preconditions

For each test scenario, there is a requirement on the conditions of (a portion of) the state
data prior to the execution of a test scenario. This requirement could be, for example,
that an account within a specific product system must reflect a specific product code,
must reflect a specific status code and the accounts need to have a balance in excess of
some amount. When required, the precondition is expressed as an expression over the
meta-data symbols of the data of the system.

3.2 Test Execution

Execution of the test scenario involves the composition of a transaction, or series of
transactions, that reference the elements of the entity, or entities, satisfying the precon-
ditions for that scenario, together with scenario specific data elements. For us, a scenario
is a test unit designed to demonstrate, possibly with other scenarios, that one, or some,
of the requirements of the system under test has been met.

3.3 Validation and Post-Conditions

The final point of our generic test is the establishment of whether the post-condition
is true or not. The post-condition is expressed as an expression over the state of the
system post-execution of the list and over the symbols of the meta-data over any chan-
nel that responded to the transaction request. When the expression is evaluated, these
symbols then refer to the actual data of the elements of the entities in the system, trans-
acted against during the execution of the scenario, as well as the actual data elements
that the system responded with. Examples of channels could be a web browser inter-
face, web services, MQ messages, with content implemented in various formats, X.25
links, TCP/IP, UDP/IP, SNA, etc. The format of the content of the messages, which is
independent of the transport mechanism, could be expressed in any number of formats
including SOAP, XML in general, HTTP; all with or without authentication schemes
(such as Kerberos), with or without encryption schemes at the element level, with or
without element signatures, etc. Outputs are not restricted to network based channels,
but include REPORTS and files.

Whether or not a test scenario is executed as an atomic unit or not depends on various
factors.

Code Magus Limited 5 CML00088-01

3.3 Validation and Post-Conditions 3 FUNCTIONAL TESTING

A test scenario can be atomically executed under the following conditions:

• That the precondition is known to be true of the entities that the test will transact
against. Knowing that the precondition is true, could be as a result of a separate
exercise which sources elements satisfying the preconditions, or it could be as
a result of an interaction with the system by the test pack prior to the test pack
executing the test scenario (for example, topping up an account to make sure that
the balance satisfies a subsequent test transaction).

• That the effect of the transactions on the system synchronously executes all pro-
cessing required by that scenario, and updates all state data prior to the system
responding to the scenario transactions request, or at least within a small and
bounded amount of time following the transaction (the actual bound would need
to be established by the requirements).

• That there is a mechanism, for the sake of test validation, for the test scenario
to access those elements of the application data required to evaluate the post-
condition expression.

The execution of a test scenario cannot be executed atomically in certain conditions.
Under these conditions, the full execution of the test scenario is performed in various
stages. Test scenario executions cannot be performed atomically when, amongst others,
the following conditions arise:

• If the establishment of the preconditions cannot immediately be done or deter-
mined as part of the execution of the test scenario.

• When the processing triggered by the test scenario transaction does not finish
within a small, bounded amount of time (for example, when it is recognised that
some deferred or batch processing is required).

• When certain updates, effects, or outputs, are made or sent on a channel that
are not immediately available to the test scenario execution, and these outputs,
updates, effects etc, contain elements recognised for the evaluation of the post-
condition.

• When the channel that one needs to interact with the system is a one-way chan-
nel without immediate feedback. For example, a gateway when the state being
updated cannot immediately be seen by the test script executing the scenario. Al-
ternatively, when the input channel is a file, and subsequent processing is required
to process the file, defining a response file or access to the updated state of the sys-
tem.

Code Magus Limited 6 CML00088-01

3.3 Validation and Post-Conditions 3 FUNCTIONAL TESTING

Without indicating whether or not an interaction with the system is synchronous or
not, the manner in which preconditions are determined or arranged, and the manner in
which post-conditions are determined or established; or whether a transaction scenario
is executed in an atomic step or over various stages; or whether transaction scenarios
are grouped together or executed individually. Figure 1 represents the process sketched
out here generically.

Reports

Outbound Files

Inbound Files

Application

database and

file system

Deferred or batch processing

− Browser

− System to system links

− Business to business links

− Web services etc.

Immediate
responses

Supporting system to system

links, business to business

consumed services and

bureau connections etc.

Figure 1: Schematic of Generic System Under Test Detailing Points of Interaction

Code Magus Limited 7 CML00088-01

3.3 Validation and Post-Conditions 3 FUNCTIONAL TESTING

While the complexity of all the available options could be quite daunting, even in the
generic cases, we can abstract the system under test and represent it schematically as
depicted in Figure 2.

Application System

Application
state data

Channel consumer

Channels

Figure 2: Schematic of Abstract System Under Test

Code Magus Limited 8 CML00088-01

3.3 Validation and Post-Conditions 3 FUNCTIONAL TESTING

And when viewed within the time-line of the phases of test execution, that is, precondi-
tion establishment, execution and verification, the schematic in Figure 3 is the result.

Timeline

Check and establish preconditions Execute test scenario Validate post−conditions

Test system Test system Test system

Figure 3: Schematic of Time Line of System Under Test

Our tools support the automation test effect, both within our own technology and in
cases where other tools are used. The component-interface we have followed in our
own technology allows us to extend the spread of situations covered, and allows us to
apply our tools to the optimisation of test automated testing effects by complementing
technology from third parties.

The test framework is shown in position below over the schematic of Figure 3 and shown
as such in Figure 4.

The preparation, execution, and validation phases of the test scenario executed have
been discussed previously.

Code Magus Limited 9 CML00088-01

3.3 Validation and Post-Conditions 3 FUNCTIONAL TESTING

Prepare Execute Validate

Test artifact repository

Reports

Files Files

Input Output
responsesrequests

Timeline

Figure 4: Schematic of Time Line of System Under Test

Code Magus Limited 10 CML00088-01

3.4 Functional Testing Tools 3 FUNCTIONAL TESTING

3.4 Functional Testing Tools

The following table describes the functional testing tools.

Tool Description
Eresia Eresia is a framework comprising of the core components which,

together with portals that manipulate the interfacing technology
of the systems under test, achieves automated software testing.
These core components include a graphical user interface, editor,
script compiler, debugger, interface definitions and run time. Im-
plementations of the portal interface type are responsible for de-
scribing (recording), manipulating and feedback of the system un-
der test by binding to that system’s technology. The Eresia frame-
work:

• Enables rapid repeatable testing of application software.
• Enables thorough testing to be done with minimal effort in

a fraction of the time that would otherwise be the case. On
regression testing, this can realise a significant productivity
benefit.

• Is a generic mechanism to script tests.
• Eases error detection by highlighting variations from ex-

pected results.
Eresia runs on a workstation and has the means to connect and
interact with technology that is hosted on a wide range of plat-
forms such as z/OS, Unix, fault tolerant machines (e.g. Stratus)
and Windows.

continued on next page

Code Magus Limited 11 CML00088-01

3.4 Functional Testing Tools 3 FUNCTIONAL TESTING

continued from previous page
Tool Description

File Injection Portal Eresia File Injection Portal (FIP) is a software testing tool that
together with Eresia enables test data to be generated from meta
data. As part of the Eresia framework, the FIP:

• Enables rapid generation of test data.
• Enables significant productivity gains relative to software

testing data setup; On regression testing, this can realise a
significant productivity benefit.

Network Injection Portal Eresia Network Injection Portal (NIP) is an automated testing tool
that together with Eresia enables messages from any network in-
put point to be scripted and fed to the application systems. These
scripts are reusable for future testing. As part of the Eresia frame-
work, the NIP:

• Enables rapid repeatable testing of application software.
• Enables thorough testing to be done with minimal effort in

a fraction of the time that would otherwise be the case. On
regression testing, this can realise a significant productivity
benefit.

• Is a generic mechanism to script tests over virtually any
network message interfaces (i.e. transport and presentation
layers).

• Eases error detection by highlighting variations from ex-
pected results.

continued on next page

Code Magus Limited 12 CML00088-01

3.4 Functional Testing Tools 3 FUNCTIONAL TESTING

continued from previous page
Tool Description

XML Injection Portal The XML Interface Portal (XIP) is a software testing tool which
allows a user to perform tasks on XML documents and interact
with various other components, such as XML Schemata, Candi-
date Data Files and Network Control Programs. XML documents
can be viewed, edited, created, deleted and sent over a network to
a server from which the response document can be captured and
presented.
All documents, settings and state information for a workspace can
be saved in a user named workspace file.

MAP3270 Portal The Eresia Map 3270 Portal is a tool used in the scripting of
Mapped 3270 Screen applications.
The tool uses the map information as meta-data and scripts are
generated using this meta-data. During test execution the map
definition is used to rebind the inputs to the screen layout and
hence to the 3270 data stream. Screen outputs are interpreted for
both the Thistle scripting language using the map definitions and
portraying the data using the meta-data therein. The portal in-
cludes a special purpose 3270 emulator and a component on z/OS
which assists in determining which map describes a data stream.

Table 1: Functional Testing Tools

Code Magus Limited 13 CML00088-01

4 TEST ARTEFACT REPOSITORY

4 Test Artefact Repository

The test artefact repository contains all the test automation scripts, all the pre-validation
data selection artefacts, all the configured data scenario scripts, etc. The repository also
contains all the artefacts required for non-functional testing, as will be discussed later.

4.1 Requirements

The test artefact repository needs to be a full function version management system,
suitable for managing and versioning both binary objects as well as text objects, such as
scripts and configuration files.

The test artefact repository must be such that it encourages the use, sharing, and distri-
bution of information amongst those involved in the testing process. It is also the tool
responsible for collecting, maintaining and sharing intellectual property relating to the
testing of systems. Our methodology regarding the effects around test automation is
designed to encourage the creating of intellectual property in the testing space. This
is necessary given the cost of development, and testing larger systems, as well as their
complexity. The means by which this investment pays off is delivered through the repos-
itory and the subsequent re-use of the artefacts in down stream regression and enhanced
functionality of test cycles.

Code Magus does not supply a test artefact repository, but we do support the usage of
a few third party and open source repositories that do meet the requirements; examples
being CVS, subversion and perforce.

• The version control system must also allow concurrent use and concurrent main-
tenance of the artefacts.

• The repository must allow test aligned structures, as well as application system
aligned structures.

• The repository, or the repository hosting system, must allow individual user man-
agement, possibly with module level access controls.

• The repository, or the repository hosting system, must provide a search facility
for searching available artefacts by name and content.

• The repository must facilitate the simple addition of test results by testers and test
analysis.

Figure 5 shows an overlap of the test scenario execution as depicted in Figure 1. The
following sections cover the various functional areas.

Code Magus Limited 14 CML00088-01

4.1 Requirements 4 TEST ARTEFACT REPOSITORY

Prepare Execute Validate

Test artifact repository

Reports

Files Files

Input Output
responsesrequests

D
at

a
se

le
ct

io
n

to
ol

s

PortalPortal Portal

Script engine

Test scripts

D
at

a
se

tu
p

to
ol

s

D
at

a
se

le
ct

io
n

to
ol

s

Test scenario data
Test result validationTest data preparation

Test Management

Figure 5: Tools and Components in the Execution of Functional Testing

Code Magus Limited 15 CML00088-01

4.2 Data Preparation and Preconditions 4 TEST ARTEFACT REPOSITORY

4.2 Data Preparation and Preconditions

It is possible with small stand-alone and isolated systems, to have on hand a database
containing the entities which match all the required test scenario preconditions. Addi-
tionally, with relatively small isolated systems, the logistics of restoring the database
back to this initial state in preparation of a test cycle is a relatively painless exercise.

In these situations, the maintenance of the entities matching these preconditions could
amount to the maintenance of a small template database over time. The tooling require-
ment for this would be minimal.

For larger, more complicated and inter dependent systems, the ability to maintain state
data in this fashion, matching the test scenario preconditions, is a little more difficult.
On top of this, where different projects in the same application space have staggered and
overlapping execution times, the ability to synchronise all projects in order to restore the
data to some initial known state is very difficult if it has to be done without impacting
those projects.

To circumvent these situations projects typically find themselves doing one of the fol-
lowing:

• Use the system to create new entities with the derived given state. This now allows
different projects to use the system to add entities (e.g. accounts) at will, and with
no or minimal impact to other users of the system. Our tools support this approach
which can be effected simply by configuring and writing the required scripts to be
executed when preparing for a test execution cycle.

There are, however, some downsides to this approach and it may not always be
possible.

– Certain scenarios may have a precondition that the entities have a history.
When historical content or significant lapsed times are required, some other
approach to the preparation of the data is required.

– Certain scenarios may have a precondition that requires that the state of the
entities against which the tests will subsequently be executed can only be
assigned by the system over a period of time.

– Systems that are maintained over many years, may have elements of state
data that were established under conditions which are no longer supported
by the system. For example missing information may have once been indi-
cated in one way (e.g. NULLs) and are not represented by default values
(e.g. spaces or zeros). The line system may still have data entered one way,
but is expected to continue working properly under the new code. It is the
responsibility of the regression pack to establish this fact.

In these cases it is sometimes desirable to prepare a test system once-off (and occasion-
ally) from a production system (possibly with suitable downsizing and obfuscating of

Code Magus Limited 16 CML00088-01

4.3 Coverage 4 TEST ARTEFACT REPOSITORY

personal data), leaving the variety of logic driving elements intact.

To support this, our tools allow for the configuration and labelling of preconditions
required by the test scenarios. In this case, the test cycle preparation would include pro-
cessing of extract data from the system, making sure that that data matched the required
preconditions and placed the required elements of test data into the actual test scenario
data (usually by populating the required elements of a driving spreadsheet).

With this tool and configuration of test scenarios, it is possible to know the coverage of
the required test scenario preconditions that are satisfied by the system. Additionally,
no laborious manual fishing exercise is required as part of the preparations of the test
cycle.

4.3 Coverage

Knowing the variety of scenarios that a system ought to support, based either on the
system specification or on detailed knowledge of the functional behaviour of the system,
is one thing, but this may not be available or may be outdated. This makes it difficult to
understand the bounds on the required coverage. Additionally, the data in a particular
instance of the system may reflect more variety than the current specification allows, or
as understood by the parties available (as previously mentioned, this situation could, for
example, have arisen by removal of inconsistencies, addressing faults and adding better
data validation over time).

It is always useful when starting an exercise of test automation to understand this upper
bound, to keep track of how the data profile in the system changes over time, and to
continuously measure the coverage of the test automation effect against this bound.

To assist in this process, we have a tool which identifies with an application system’s
data tables or files, the unique values of fields in that table file (or join up various tables
and/or files), or groups of combinations of fields. This process also reports on the cardi-
nality of each of these fields or cross product of fields when they are grouped, showing
how many rows, records, etc, have that value or combination of values.

This tool, also, optionally produces a file containing images of the input records which,
modulo a given factor, have unique field values, or unique groups of field values, thus
producing a minimal source with the same data value coverage.

4.4 Securing Data

Where data access is required to be read and produced in the form of records of a file or
rows of a table query result, the access to this data is described through a generic API
which uses one of a number of access methods responsible for the actual data or media
access. Such media access methods support local and remote execution of queries,

Code Magus Limited 17 CML00088-01

4.4 Securing Data 4 TEST ARTEFACT REPOSITORY

reading and writing of files, etc. In addition to the pre-existing access methods, there
is an SDK for developing additional access methods, dealing with proprietary, name, or
legacy situations.

This immediately makes any data servers or media accessible through this new access
method available to all the Code Magus tools. In addition, the library is separately
available, allowing proprietary tools and third party tools to benefit from data access
using any of the access methods.

Code Magus Limited 18 CML00088-01

5 NON-FUNCTIONAL TESTING TOOLS

5 Non-Functional Testing Tools

Orkhestra, the primary Code Magus non-functional testing tool, drives various config-
ured channels into a system under test. Observations made by Orkhestra are reported
to a real time data collection and rendering agent; or alternatively recorded for later
analysis and reporting. In addition to these external observations of the behaviour of the
system, as is evident by the activity on the channels into the system, probes deployed
onto the hosting elements of the system under test observe, record, and report resource
utilisation and performance metrics to the same data collection and rendering agent.

There are probes that extract resource utilisation (CPU, memory, paging, network ac-
tivity, disc activity, etc.) and performance metrics from machines such as Windows
servers, AIX, Solaris, Linux, devices that support a Simple Network Management Pro-
tocol (SNMP) using the Management Interface Base (MIB), etc. Should a customer
have a requirement for a probe not supported, we will assess the feasibility of providing
one.

It is the function of the probe to invoke a local machine’s API in order to extract re-
source usage and performance data and communicate this data in a common format for
reconciling, analysis, reporting and rendering. There is a kit available for customers to
develop their own probes.

As with functional testing, non-functional testing requires access to specific elements of
the application data of the system under test. These might be function, or state specific
criteria that these elements are expected to match. We use the same access method
mechanism that is across the entire tool suite. In particular, one of these access methods
lends itself to the non-functional testing space, by providing the non-functional scripts
access to streams of application data, delivered in a pre-read, or read-ahead scheme,
over the network, thus sharing data between all the instances driving the system under
test, while minimising the possibility of starving the test system of data.

Figure 6 illustrates the components of the driving system for non-functional testing.

To describe the behaviour of the element driving the system under test, an input-output
finite state machine (IO FSM) is used. For the purposes of observing the behaviour of
the system under test, for analysis and reporting purposes, a certain amount of high-
level or abstract state is required. This is the level at which state information is known
in the IO FSM. Additionally, for the purpose of controlling the instances of the uses of
the channels of the system under test, a certain amount of direction of the instance is
required. This control takes the form of setting and cancelling times, delaying progress
based on configured times drawn from configured distributions and allowing, for exam-
ple, think times to be executed.

In order to maintain an actual conversation with the system under test, the IO FSM uses
a control program which maintains the detail state required to look after the instances
of one of more instances of the controlling IO FSM. Because the communication be-

Code Magus Limited 19 CML00088-01

5 NON-FUNCTIONAL TESTING TOOLS

I/O FSM model of entity

MA

MB

IA1

IB1

Instances of
the models

interacting with system

Timing and control element

Directing I/O FSM model
instances and high level

state reporting of the I/O FSMs

Channels of
the system
under test

Control programs responsible
for communication and
detailed session state

Figure 6: Orkhestra Components for Driving Non-Functional Testing

tween the controlling element and control programs is minimal, and because the control
programs report events to the controlling element, time stamped at the time of obser-
vation, and the fact that the software internally synchronises all clocks, the architecture
lends itself to a scalable solution in which the control programs are distributed to allow
greater loads on the system under test by using the resources of more machines, network
adaptors, network segments, etc.

The elements of the test system in the Figure 7 are represented by the Block TS in
Figure 8.

The Code Magus tool Serfboard is responsible for the collecting, recording and on-line
rendering of external observations (such as throughput, response times, breakdowns of
response times and time-outs by response types), machines resource usage run times
(such as CPU usage, memory usage, paging activity, network bandwidth usage, files,
system bandwidth usage) of the hosting components of the system under test, and of
the performance metrics (such as content switches, ready queue or load average values,
or any of typically hundreds of metrics available through machine specific performance
API’s).

The data sent to Serfboard originates from the Orkhestra test system as well as the
machine and components of the system under test through the various probes deployed
on and adjacent to these components.

In addition to the network driven functional and non-functional testing scenarios de-
scribed above, the Code Magus tool suite includes a component called Verify. Verify

Code Magus Limited 20 CML00088-01

5 NON-FUNCTIONAL TESTING TOOLS

Master clock

C
ha

nn
el

s
in

to
 th

e
sy

st
em

 u
nd

er
 te

st

Clock
Synchronisation

Controlling machine

Control program
hosting machines

Command
Interface

Recording
and reporting

Observation

Figure 7: Orkhestra Configuration for Non-Functional Testing

Code Magus Limited 21 CML00088-01

5 NON-FUNCTIONAL TESTING TOOLS

Master clock

Test system

Tiers of the system under test

E
xt

ra
ct

E
xt

ra
ct

E
xt

ra
ct

T
es

t s
ys

te
m

 o
bs

er
va

tio
n

re
co

rd
in

g
an

d
re

po
rt

in
g

Platform specific
probes with

synched clock
Clock synchronisation

Data recorded for
post processing analysis

and reporting

User community

System under test
resource and performance

metric recording

Real time data
processed for

Web server

display instruments

Figure 8: Orkhestra Configuration in Relation to Components of the System Under Test

Code Magus Limited 22 CML00088-01

5 NON-FUNCTIONAL TESTING TOOLS

is used for the bulk testing and verification of prepared cases. This is accomplished
by a classification and rules system that processes prepared cases in bulk and reports
on the servers on failure of these cases, including the variance where connectiveness is
quantitative rather than qualitative.

As part of the reporting of failed cases, the tool also reports on the process of deciding
rules, by the process of classifying cases according to the configured conditions, and
presents this trace for consideration, including the reporting of the contents of the case.

Figure 9 illustrates the process of Verify.

Verify is particularly useful in test situations when applied pricing or fee generation
requires testing.

Code Magus Limited 23 CML00088-01

5 NON-FUNCTIONAL TESTING TOOLS

Transaction detail with pre− and post−conditions: Join of
(1) system entities before transactions applied;

(2) with detail of applied transactions; (3) with statement or audit data;
and (4) with state of system entites after transactions are applied

before application execution

Application State Data

Application Execution

Application State Data

after application executionTransactions processed

or read into application

Statement or Audit of

executed transactions

Verify
Pass

Fail

Missed

Ignore

Verify Config

Parameter

Config

Time Line

Reports

Parameters

Data to be Verified

A
p
p
li

ca
ti

o
n
 E

x
ec

u
ti

o
n

T
es

t
C

as
e

D
at

a
P

re
p
ar

at
io

n
T

es
t

E
x
ec

u
ti

o
n

Figure 9: Schematic of Generic System Under Test Detailing Points of Interaction

Code Magus Limited 24 CML00088-01

6 ACCESS METHODS

6 Access Methods

We have already mentioned the tools usage of access methods. Each tool that requires
access to a record or message stream uses the Code Magus Recio library. This library
allows the tool to connect to an access method by means of an open specification string
(an open spec) which details the access method, the ’object’ being accessed, and, op-
tionally, any access method specific options.

Code Magus supplies access methods for reading and writing files locally or remotely,
in local or remote file formats, for reading result sets of queries executed locally or
remotely (from a DB2 instance running under z/OS) or remotely via ODBC.

There is also a toolkit which describes the interface and the requirements for the cus-
tomer or third party to develop their own access methods.

Access methods can also be stacked, allowing processing of data to be injected into the
record or message reading and writing process. This is useful for aligning or adjusting
the serialisation and de-serialisation of objects suitable for processing in one form, so
that they are presented in another form suitable for some other type of processing.

6.1 Supplied Access Methods

Each access method is available for use by, and therefore extends, any application en-
abled by the use of the recio[1] library functionality.

Access Method Description
Binary The binary access method[3] supports fixed and variable length

record files implemented on byte-stream file systems. This in-
cludes VOS stream files, UNIX binary files, Windows/DOS bi-
nary files and z/OS classic MVS and HFS files. Classic MVS
files can be supported either in their underlying record mode or
by treating the files as binary stream files.
On byte-stream based file system files, variable length record files
are implemented by the inclusion of a record descriptor word in
front of each record. The format of this RDW is the same as the
format on Classic MVS RECFM=V files. And is the same format
that is included when these files are binary copied with FTP from
MVS systems using the ‘quote site rdw’ option.

continued on next page

Code Magus Limited 25 CML00088-01

6.1 Supplied Access Methods 6 ACCESS METHODS

continued from previous page
Tool Description

Text The Text access method[9] supports delimited record text files im-
plemented on byte-stream file systems and on MVS for record
based files. This includes VOS stream files, UNIX text files, Win-
dows/DOS text files and z/OS classic MVS and HFS files. With
the exception of MVS classic files (which are record based files)
all the other types (i.e. stream based files) may be read or written
on any of the supported platforms.

ODBC The odbc access method[20] supports reading data from an ODBC
data source on Linux, Unix and Windows platforms.

MVS The MVS access method[6] supports access to fixed and variable
length record files implemented on MVS systems. JCL format
syntax is used to specify files allowing correct and efficient file
allocation.

Remote The remote access method[7] and server support any other Recio
access method to be used remotely across a TCP/IP network.

DB2query The db2query access method[17] supports reading data using a
DB2 SQL query. This includes UDB on Linux, UNIX and Win-
dows, and DB2 for z/OS. Using the associated access method
DB2dclgn the meta data for the query can be obtained.

Dataset The dataset access method[4] supports named and cataloged con-
figurations of access method open specification strings. These
open specifications can be generic, arranged in a hierarchy, and
can differ for the same cataloged name depending on the mode
that the Recio record stream is opened in. This is then a conve-
nient method of abstracting away from the details of the access
method specification string; especially where it may be lengthy or
complex.

Edit The edit access method[14] supports editing of input or output
records after reading or before writing them using an underlying
access method. An edit process is often used to expand com-
pressed records on reading or to contract records prior to writing
them. For example, self defining compressed records are easily
processed in this way allowing the application the ability to only
process complete uncompressed records.

continued on next page

Code Magus Limited 26 CML00088-01

6.1 Supplied Access Methods 6 ACCESS METHODS

continued from previous page
Tool Description

Source The source access method[19] supports reading from a source
server on a remote platform.
The source access method and the source server enable the ability
to read a remote recio data stream in an efficient manner. This is
most relevant when the remote data stream is required by a pro-
gram or programs (the requester) within a system under test (SUT)
where the effect of network latency needs to be minimal. Read-
ing the data does not cause any delay or slowdown of the network
traffic, as the data is received immediately it arrives thus clearing
the system wide buffers within the network layer. The source ac-
cess method and source server also offer the ability for a source
to be shared amongst multiple requesters within the SUT, circum-
venting multiple streams to the same recio data stream. In this
instance the multiple streams are served from one source defini-
tion and each stream is processed in a round robin manner. Finally
the source access method and source server allow a stream to be
repeated continuously. This allows a test to be set up based on
time limits and a constant flow of data; in other words an end of
file condition would not prematurely end a defined test cycle

Directory The directory access method[5] supports reading directory entries
on Unix, Linux and Windows based systems and Catalog entries
on MVS.

Image The image access method[10] supports reading a record stream
from a DB2 Image Copy dataset, where both compressed and non-
compressed backups of table spaces are supported. One instance
of an image access method recio stream allows a program to read
the data from a given object (determined by OBID) row by row.

Concatenate and Split The concat and split access methods[22] support concatenating
recio input streams and splitting recio output streams, using an
underlying access method for the actual data IO. A concatenation
of input streams reads the streams in the sequence they are named
in the list of objects in the recio open specification. When an
output stream is split into more than one stream the object name
is modified as each stream is opened for writing.

continued on next page

Code Magus Limited 27 CML00088-01

6.1 Supplied Access Methods 6 ACCESS METHODS

continued from previous page
Tool Description

Null The null access method[18] supports writing to an access method
that discards all records. This is similar to writing to the file
/dev/null on Unix platforms and is useful when the a vast amount
of data is produced all of which is not required to be kept in any
manner. When reading from this access method an immediate
end of file is returned. This access method is very useful in stress
testing or non functional testing.

Standard The standard access method[8] supports reading from standard
input and writing to standard output and error on byte-stream file
systems. This includes under the operating systems VOS, UNIX,
Windows/DOS and z/OS (both classic MVS and HFS), all using
the Standard C I/O Functions of streams.

Table 2: Access Methods

Code Magus Limited 28 CML00088-01

7 NETWORK CONTROL PROGRAMS

7 Network Control Programs

Where ever network access is required to send or receive messages over a transport
layer, the Code Magus toolkit uses an interface to an object called a network control
program (NCP) which has the responsibility of maintaining the state of that transport
layer connection, as well as the responsibility for transmitting and receiving messages
over the particular transport layer.

The Code Magus suite of tools includes a number of network control programs. Table
3 on page 29 describes the available network control programs.

In addition to the supplied network control programs, a kit is provided for customer or
third party developed network control programs.

NCP Description
ncpcrdon ncpcrdon sends and receives messages to and from processing

systems that consume on-line transactions based on credit card
association specifications such as VISA, MasterCard and Ameri-
can Express.

ncphttp ncphttp sends and receives messages using the HTTP protocol.
ncpkhttp ncpkhttp sends and receives messages using the HTTP protocol

and provides the security features required by Kerberos version 5
published by the Massachusetts Institute of Technology (MIT).

ncpmq ncpmq sends and receives messages using Websphere MQ
Queues.

ncpsoap ncpsoap sends and receives messages using HTTP/SOAP mes-
sages.

tcpframe tcpframe is a generic NCP that sends and receives messages over
TCP/IP to and from a remote host. It offers various different op-
tions for framing the message for correct delivery to the receiving
server. It also allows output messages to be serialised for effi-
cient transport (for example compressed) and input messages to
be de-serialised for consumption by the test tool or application
(for example expanded).

Table 3: Supplied Network Control Programs

Code Magus Limited 29 CML00088-01

8 META-DATA

8 Meta-Data

Access methods and meta data control programs send/write and receive/read serialised,
binary, or document data in various forms. For the sake of robustness and convenience
of referencing to the data, by humans and machines (for example, in scripts), the Code
Magus test scripts seeks to bind to applications meta data whenever possible. For XML
XSD described data, this is typically bound into an XML library to de-serialise the docu-
ment for consumption by the test tool, and then serialised by the library for transmission
or storage.

For mapped messaged and records, as is typical of rows of query result sets, formatted
records in the files of an application system, standards based files such as IATA DISH,
card association and interchange file and message layouts (for example, ISO8583 based
formats) and the endless possibility of customer and customer application system based
formats, we use a scheme of abstracting the meta data scheme, and where required, use
an access method injected serialisation and de-serialisation mechanism (once configured
this stacking is not visible to the casual user). In particular, the abstraction layer is
capable of consuming customer application specific meta data schemes (in, for example,
COBOL copybook formats), or DBMS column meta data describing the columns of a
query result set.

The artefact configuration of this scheme binds the underlying schemes (for example,
copybook or copybook elements) to the various record or message types, and exposes,
through the API, the elements of those schemes appropriate for that record or message
type.

All Code Magus tools requiring the binding of application specific meta data of this type
access application data elements through this scheme.

Code Magus Limited 30 CML00088-01

9 DATA MANIPULATION/MANAGEMENT TOOLS

9 Data Manipulation/Management Tools

9.1 Overview

In addition to the test driving functional and non-functional tools described here, the
Code Magus tool suite includes data query, investigation and test preparation tools. An
example of such a tool is the tool Unique, which was mentioned earlier.

The Eresia portals NIP, FIP and XIP process test content for driving and interpreting
reports in the form of messages, records and documents of a system under test. These
tools do not only operate as a test system but also allow the user to inspect, perform ad
hoc queries and ad hoc preparation of file records, messages and documents (for exam-
ple, SOAP messages for a web service hosted application). When used in this manner,
they present a graphical interface for the direction of the tool. When these GUI fronted
components read and write records, they are directed to do so by prompting the user
for a recio open specification string, and access the specified object using the indicated
access method and supplied options. And when these GUI fronted tools require network
access for the ad hoc interaction with the system under test, they do so by prompting the
user for a network control program. The network control program interface includes a
mechanism of discovery of network control program specific attributes, some of which
are mandatory and some of which are optional. The tool then has the opportunity to
prompt the tool user for values for these options.

To prevent the process of using these tools on an ad hoc basis being a burden for the user,
these choices and configurations are saved in work spaces as files on the local machine.
These work spaces have associations with the tools, thus making the sharing and re-
turning to the same configuration a simple matter of keeping track of the corresponding
work space files.

When the GUI fronted components interpret log messages, file records, and messages
off the wire, they do so using the same meta data scheme of object types mentioned
earlier.

This scheme, together with the access method scheme, allows the user to query local
or remote files, tables or result sets of remote or ODBC queries, in a manner which
assists the user of the tool to construct the query by pull-down presentation and choice
of the available meta data. These queries are also saved in the tool work space, so can
be canned and shared between the users.

9.2 File Tools Suite

The File tools[11] suite of tools offer the ability to consistently access and prepare data,
especially for stress or non functional testing. All these tools use the recio functional-

Code Magus Limited 31 CML00088-01

9.2 File Tools Suite 9 DATA MANIPULATION/MANAGEMENT TOOLS

ity when accessing data which offers the ability to process many different sources and
source types, which may be hosted on remote platforms.

Code Magus Limited 32 CML00088-01

9.3 Cross Platform Copy 9 DATA MANIPULATION/MANAGEMENT TOOLS

Tool Description
Print/Unpack The Print tool reads an input file mapped by an object types

definition[24] and produces one of a number of different format-
ted outputs.

Copy The Copy tool reads an input file optionally mapped by an object
types definition[24] and copies it to the output file.

Compare The Compare tool reads two input files mapped by an object types
definition[24], compares them and produces a report of the result.

Pack The Pack tool reads a comma separated (CSV) file of data and
writes an output file mapped by an object types definition[24].

Unique The Unique tool does simple domain frequency analyses and per-
forms a type of downsizing based on making certain fields, or
combinations of fields unique in an output file by filtering the
records from the given input file. The tool works by supplying a
copybook and a record in that copybook which is assumed to map
the file. There can be any number of fields or groups of fields.
Ideally a field or group of fields would be chosen because the car-
dinality of the column or column group is relatively small and
the field or group of fields forms some sort of path or conditional
indicator to the processing programs or system.

Shuffle The Shuffle tool will read in a file described by a Recio open string
specification and write out the file described by the output Recio
open string specification by shuffling the sequence of the records
from the input file in a random manner. This means that although
the output file is the same size and holds the same records as the
input file repeated runs using the same input file will not produce
the same sequence of records in the output file from one run to the
next.

Table 4: File Tools Suite Components

9.3 Cross Platform Copy

Cross Platform Copy[23] copies files with multiple fixed format records suitable for
processing on one platform, so that they are suitable for processing on other platforms.
The files can contain records with multiple record formats, but the content of any par-
ticular record must be able to distinguish the layout of that record. In order for Cross
Platform Copy to be able to copy a file and convert its records, certain configuration
data is required. This configuration data is kept in a separate file and contains logic and
references to copybooks. Within the configuration file there is a section for each record
type. These sections, referred to as layouts, assign a mapping to the record by way of
selecting 01-level items in a copybook together with an indication of which fields in the
copybooks are actually present in each case. In order to know whether or not a partic-

Code Magus Limited 33 CML00088-01

9.4 Report Compare Utility 9 DATA MANIPULATION/MANAGEMENT TOOLS

ular layout applies to a record, a predicate is included in each layout. This predicate
is restricted in that it only comprises of a conjunction of equalities and in-equalities in
which fields are compared to literals.

Together with the layouts in the configuration file, there are input and output options
which pertain to the source and target systems on which the file originates (input) and
on which the the file will be processed (output). These platforms may be different to the
platform on which the Cross Platform Copy tool ultimately executes.

9.4 Report Compare Utility

The Code Magus CSV File and Report Compare Utility compares cell contents of a
subset of report files under the specification of a row key, a column delimiter and a list
of all or some of the columns to compare and reports on any differences found. At the
end of the difference report a summary of the differences is printed.

By specifying the column delimiter the utility can compare comma separated variable
(CSV) files or fixed column reports.

The utility can also

• Skip rows at the start of the report so that report heading lines may be ignored.

• Set a numeric tolerance so that two compared numeric cells are considered equal
if they are within a certain tolerance of each other either specified as a relative or
absolute tolerance range.

• Generate column headings if they are not evident on the first row of the reports to
be compared. The headings generated are similar to those of popular spreadsheet
applications. They range from A to Z, AA to ZZ and BA to BZ onward.

The Code Magus CSV File and Report Compare Utility runs on Unix and Unix-based
platforms, Windows platforms, z/OS USS and Classic MVS environments.

9.5 Open System Sort

Open System Sort[2] is a Unix styled sort utility which can be configured to use the
resources of an available machine in order to improve the sort times and throughput.
Open System Sort sorts files which are expected to be made up of records with fixed or
variable length format, but which adhere to a fixed layout typical of files described and
used in legacy systems such as PL/I and COBOL.

Open System Sort uses a configuration file in which the bounds on the resources that an
instance of Open System Sort may use are stated.

Code Magus Limited 34 CML00088-01

9.5 Open System Sort 9 DATA MANIPULATION/MANAGEMENT TOOLS

From an application point of view, the format of the key specification follows the same
syntax and semantics as is used on traditional host systems such as MVS. In addition it
is possible to use the application meta-data to specify fields and hence to describe the
sort requirements in a symbolic manner.

Code Magus Limited 35 CML00088-01

10 SERVICES

10 Services

In addition to the tools and components, Code Magus offer a number of support services
within the automated testing space. These services range from basic training on the
tools, to training in methodologies using the tools in a robust and flexible manner. The
methodology that Code Magus has adopted has proven itself and has been documented
in training material that we make generally available.

In addition to supporting the scripting by Code Magus clients, Code Magus also have
a number of domain specific solutions scripted. We also provide bespoke solutions on
behalf of our clients.

Code Magus Limited 36 CML00088-01

10 SERVICES

The following table shows domain specific solutions that Code Magus offers.

Solution Description
AMEXCardOnline The American Express on-line transaction script suite is a solution

aimed at providing users with a fully functional set of American
Express on-line transactions derived from and in compliance with
American Express that will perform chosen transactions against
the desired target system.

AMEXSettlement The American Express settlement script suite facilitates the cre-
ation of settlement files based on the American Express Program-
mer Specifications. The settlement files will be generated in a
format suitable for submission to the desired target system.

MCICISCardOnline The MasterCard Customer Interface Specification on-line trans-
action script suite is a solution aimed at providing users with a
fully functional set of MasterCard on-line transactions derived
from and in compliance with Mastercard that will perform cho-
sen transactions against the desired target system.

MCISettlement The MasterCard settlement script suite facilitates the creation of
settlement files based on the IPM Clearing Format specification.
The settlement files will be generated in a format suitable for sub-
mission to the desired target system.

VISACardOnline The VISA on-line transaction script suite is a solution aimed at
providing users with a fully functional set of VISA BASE I on-
line transactions derived from and in compliance with VISA that
will perform chosen transactions against the desired target system.

VISASettlement The VISA settlement script suite facilitates the creation of settle-
ment files based on the BASE II Clearing Interchange Formats.
The settlement files will be generated in a format suitable for sub-
mission to the desired target system.

Table 5: Bespoke solutions

Code Magus Limited 37 CML00088-01

11 PARAMETERISATION SCHEMES

11 Parameterisation Schemes

11.1 Application Parameters

Parameters that control a particular run whether automatically set or supplied on de-
mand from the user are part of every tool within the Code Magus software portfolio.
Application parameters, together with the defined user interface, enable an application
to define, manipulate and store the current state of a parameter set. During an applica-
tion or tool start-up the user, if foreground processing is chosen, has the ability to set and
change the values of any of the parameters in the parameter cache. Whether foreground
or background processing is selected the application will not be allowed to start until all
the parameters have a valid value.

The configuration file defines the processing mode, user interface, title and description,
sets environment variables for use in the file, names the parameters and sets the attributes
for each parameter.

The parameter attributes define what a valid parameter is. To this extent the set of
parameters defined by a particular configuration are bound to that application; meaning
that each application would have its own set of parameters.

The user interface can be set for the platform on which the user is logged on to. For
example on Windows there is a tabbed or list form GUI available. On all platforms the
default user interface is command line based.

11.2 Structured Environment Variables

The Code Magus software also provides an interface for any tool, program or customer
application to retrieve the value of a structured environment variable (SEV). A SEV is
an environment variable that resolves to a value obtained from a specific cache or store
of values and is defined by a configuration file. The structure of the name of the SEV
identifies it as a SEV, names the store and lastly names the actual variable. Using this
interface, caches of variables can be set up; For example there may be a cache for the
current machine or the running application.

Structured environment variables are an extension of system environment variables.
They are specified in the same way but the structure of the name allows for qualify-
ing the variable within a particular cache.

Code Magus Limited 38 CML00088-01

12 MONITORING NON-FUNCTIONAL TESTING

12 Monitoring Non-Functional testing

Code Magus SerfBoard is a system that enables a user to monitor, and possibly interact
with, a running system or systems via a web based graphical dashboard. Dashboards of
this nature that show a unified view of key performance indicators of different systems
are extremely effective in the management of networked systems testing or systems
stress testing. In stress testing, being interactive, the user can change various thresholds
and key values in order to watch the effect of different loads on the system under stress.
The SerfBoard system comprises the following parts:

• The core server (SerfBoard) which is a daemon process (executes in the back-
ground) and receives metric data, stores it and supplies it to the web application
on request.

• The display instrument plug in programs and web application which are responsi-
ble for rendering the final dashboard as viewed by the user. The web application
continuously requests updates of data from the server.

• Metric feed probes and feed library. The metric feed probes are responsible for
querying a specific system or interface that supplies metrics (for example SNMP),
extracting the relevant data, converting it to the SerfBoard format and forwarding
the metric data on the the server. There is also a C programming library interface
available for development of user written metric feeder programs.

Code Magus Limited 39 CML00088-01

12 MONITORING NON-FUNCTIONAL TESTING

Metrics are supplied to Serfboard from the following probes:

Probe Description
cmlxsnmp[12] Serfboard SNMP Metric Probe. This probe can extract metrics for

by a system or device that exposes an SNMP MIB interface.
cmlxaixp[13] Serfboard AIX Performance Metric Probe. This probe runs on

AIX and uses the AIX perfstat programming interface to extract
AIX specific performance metrics.

cmlxwinp[15] Serfboard Windows Performance Metric Probe. This probe runs
on Windows platforms and uses the Performance Data Helper ap-
plication programming interface to extract Windows specific per-
formance metrics.

cmlxwasp[16] Serfboard Websphere Application Server Performance Metric
Probe. This probe uses the WAS perfServletApp application to
extract Websphere performance metrics.

cmlxsolp[21] Serfboard Solaris Performance Metric Probe. This probe runs on
Solaris and uses the AIX kstat programming interface to extract
Solaris specific performance metrics.

Table 6: Metric Probes

Code Magus Limited 40 CML00088-01

REFERENCES REFERENCES

References

[1] recio: Record Stream I/O Library Version 1. CML Document CML00001-01,
Code Magus Limited, July 2008. PDF.

[2] PPMSORT: Parallel Open Systems Sort Fixed Format Record Based File Sort-
ing User Guide and Reference Version 1. CML Document CML00003-01, Code
Magus Limited, July 2008. PDF.

[3] binary: Fixed and Variable Length Record Stream Access Method Version 1. CML
Document CML00005-01, Code Magus Limited, July 2008. PDF.

[4] dataset: Catalog Access Method Definitions Version 1. CML Document
CML00013-01, Code Magus Limited, July 2008. PDF.

[5] directory: Directory Record Stream Access Method Version 1. CML Document
CML00014-01, Code Magus Limited, July 2008. PDF.

[6] MVS: MVS Record Stream Access Method Version 1. CML Document
CML00016-01, Code Magus Limited, July 2008. PDF.

[7] remote: Remote Record Stream Access Method Version 1. CML Document
CML00022-01, Code Magus Limited, July 2008. PDF.

[8] standard: Standard Input And Output Using Recio Version 1. CML Document
CML00030-01, Code Magus Limited, July 2008. PDF.

[9] text: File Access Method Using POSIX Streams Version 1. CML Document
CML00031-01, Code Magus Limited, July 2008. PDF.

[10] image: DB2 Image Copy Reader Access Method Version 1. CML Document
CML00036-01, Code Magus Limited, July 2008. PDF.

[11] File Tools: Reference and Guide Version 2. CML Document CML00043-02, Code
Magus Limited, June 2009. PDF.

[12] cmlxsnmp: SNMP Metric Probe. CML Document CML00044-01, Code Magus
Limited, June 2009. PDF.

[13] cmlxaixp: AIX Performance Metric Probe. CML Document CML00045-01, Code
Magus Limited, June 2009. PDF.

[14] edit: Recio Edit Access Method Version 1. CML Document CML00047-01, Code
Magus Limited, June 2009. PDF.

[15] cmlxwinp: Windows Performance Metric Probe. CML Document CML00048-01,
Code Magus Limited, June 2009. PDF.

[16] cmlxwasp: Websphere Application Server Performance Metric Probe. CML Doc-
ument CML00049-01, Code Magus Limited, June 2009. PDF.

Code Magus Limited 41 CML00088-01

http://www.codemagus.com/documents/recio_CML0000101.pdf
http://www.codemagus.com/documents/ppmsort_CML0000301.pdf
http://www.codemagus.com/documents/binaryam_CML0000601.pdf
http://www.codemagus.com/documents/datasetam_CML0001301.pdf
http://www.codemagus.com/documents/diram_CML0001401.pdf
http://www.codemagus.com/documents/mvsam_CML0001601.pdf
http://www.codemagus.com/documents/remoteam_CML0002201.pdf
http://www.codemagus.com/documents/stdam_CML0003001.pdf
http://www.codemagus.com/documents/textam_CML0003101.pdf
http://www.codemagus.com/documents/imageam_CML0003601.pdf
http://www.codemagus.com/documents/filetools_CML0004302.pdf
http://www.codemagus.com/documents/cmlxsnmp_CML0004401.pdf
http://www.codemagus.com/documents/cmlxaixp_CML0004501.pdf
http://www.codemagus.com/documents/editam_CML0004701.pdf
http://www.codemagus.com/documents/cmlxwinp_CML0004801.pdf
http://www.codemagus.com/documents/cmlxwasp_CML0004901.pdf

REFERENCES REFERENCES

[17] db2query: Recio DB2 Query Access Method Version 1. CML Document
CML00050-01, Code Magus Limited, November 2009. PDF.

[18] null: Null Access Method Using Recio Version 1. CML Document CML00055-
01, Code Magus Limited, January 2009. PDF.

[19] source: Source Access Method Using Recio Version 1. CML Document
CML00056-01, Code Magus Limited, January 2009. PDF.

[20] odbcdcl: Recio ODBC DCL Generator Access Method Version 1. CML Document
CML00064-01, Code Magus Limited, February 2010. PDF.

[21] cmlxsolp: Solaris Performance Metric Probe. CML Document CML00065-01,
Code Magus Limited, June 2009. PDF.

[22] concat: Recio Concatenate and Split Access Method Version 1. CML Document
CML00067-01, Code Magus Limited, May 2010. PDF.

[23] cmlxpcpy: Cross Platform File Copy Version 2. CML Document CML00029-02,
Code Magus Limited, July 2008. PDF.

[24] Code Magus Limited. objtypes: Configuring for Object Recognition, Generation
and Manipulation. CML Document CML00018-01, Code Magus Limited, July
2008. PDF.

Code Magus Limited 42 CML00088-01

http://www.codemagus.com/documents/db2queryam_CML0005001.pdf
http://www.codemagus.com/documents/nullam_CML0005501.pdf
http://www.codemagus.com/documents/sourceam_CML0005601.pdf
http://www.codemagus.com/documents/odbcdclam_CML0006401.pdf
http://www.codemagus.com/documents/cmlxsolp_CML0006501.pdf
http://www.codemagus.com/documents/concatam_CML0006701.pdf
http://www.codemagus.com/documents/xpcfiles_CML0002902.pdf
http://www.codemagus.com/documents/objtpuref_CML0001801.pdf

	1 Introduction
	2 Modular Design
	3 Functional Testing
	3.1 Preconditions
	3.2 Test Execution
	3.3 Validation and Post-Conditions
	3.4 Functional Testing Tools

	4 Test Artefact Repository
	4.1 Requirements
	4.2 Data Preparation and Preconditions
	4.3 Coverage
	4.4 Securing Data

	5 Non-Functional Testing Tools
	6 Access Methods
	6.1 Supplied Access Methods

	7 Network Control Programs
	8 Meta-Data
	9 Data Manipulation/Management Tools
	9.1 Overview
	9.2 File Tools Suite
	9.3 Cross Platform Copy
	9.4 Report Compare Utility
	9.5 Open System Sort

	10 Services
	11 Parameterisation Schemes
	11.1 Application Parameters
	11.2 Structured Environment Variables

	12 Monitoring Non-Functional testing

