
cmlkeep: Process Keep Alive Version 1 Reference
and User Guide

CML00092-01

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road

Oxford, OX2 6EY, United Kingdom
www.codemagus.com

Copyright c⃝ 2014 by Code Magus Limited
All rights reserved

December 15, 2020

CONTENTS CONTENTS

Contents
1 Introduction 3

1.1 Keep Alive . 3
1.2 Monitoring jobs . 4
1.3 Signalling jobs . 4

2 Job Keep alive Processing 5
2.1 Introduction . 5
2.2 Command line parameters . 5

2.2.1 -j, –job-name . 6
2.2.2 -t, –title . 7
2.2.3 -s, –sleep . 7
2.2.4 -n, –notify-command . 7
2.2.5 -f, –notify-file . 7
2.2.6 -m, –restart-max . 8
2.2.7 -w, –restart-window . 8
2.2.8 -y, –try-harder-to-restart . 8
2.2.9 -e, –normal-exit-rc . 9
2.2.10 -r, –normal-restart-rc . 9
2.2.11 -E, –normal-exit-signal . 10
2.2.12 -R, –normal-restart-signal . 10
2.2.13 -H, –hup . 10
2.2.14 -k, –keep-log-spec . 11
2.2.15 -l, –log-file . 11
2.2.16 -T, –log-name-strftime . 11
2.2.17 -B, –log-segment-bytes . 12
2.2.18 -S, –log-segment-seconds . 12
2.2.19 -C, –log-segment-records . 12
2.2.20 -I, –log-segment-signal . 12
2.2.21 -F, –log-flush-writes . 13
2.2.22 -O, –do-not-capture-output . 13
2.2.23 -J, –print-job-directory . 13
2.2.24 -v, –verbose . 13
2.2.25 -?, –help . 13
2.2.26 –usage . 14

2.3 Starting a Job . 14
2.4 Tuning excessive target process restarts 15

3 Job Monitoring 17
3.1 Introduction . 17
3.2 Command line parameters . 17

3.2.1 -j, –job-name . 17
3.2.2 -d, –delete . 17
3.2.3 -S, –silent . 18
3.2.4 -v, –verbose . 18
3.2.5 -?, –help . 18

Code Magus Limited 1 CML00092-01

CONTENTS CONTENTS

3.2.6 –usage . 18
3.3 Monitoring a Job . 18

4 Signalling a Job 20
4.1 Introduction . 20
4.2 Command line parameters . 20

4.2.1 -j, –job-name . 20
4.2.2 -k, –cmlkeep . 20
4.2.3 -s, –signal . 21
4.2.4 -S, –silent . 21
4.2.5 -v, –verbose . 21
4.2.6 -?, –help . 21
4.2.7 –usage . 21

4.3 Signalling Examples . 22

Code Magus Limited 2 CML00092-01

1 INTRODUCTION

1 Introduction

Code Magus Keep Alive is a suite of programs used for starting and managing critical
processes. Each invocation of a process (or target process) is called a job and is referred
to by a unique job name. Keep Alive can be used to start a job and ensure that it is
always running by restarting it if it terminates. It also allows a user to monitor the status
of all jobs and to send a signal to any one of them.

1.1 Keep Alive

The Code Magus tool cmlkeep will run and continuously restart a target process spec-
ified in the command line options. This means that any server or daemon that is always
required to be running is immediately restarted should it terminate either through a fault
(an internal error or an external agent such as the Linux out-of-memory killer) or by in-
tention. If there is a time span before which it is inadvisable to restart a process a sleep
time can be specified in seconds which will cause cmlkeep to wait before restarting
the target process. Often TCP/IP ports require up to 4 minutes while they wait for any
lost message segments in the network to expire before they can be re-used again.

Each job must have a unique name as known to cmlkeep; This is either specified as a
command line option or is the base name of the target process. Additionally a title may
be specified for this job for reporting purposes or as an aid to diagnosis should the need
arise.

There is the facility to specify the maximum number of restarts allowed within a time
window so that a forever failing target process will not be restarted ad infinitum.

cmlkeep can also capture the standard output and standard error streams of the target
process and write them to a variable length RDW based log. An RDW log is a record
based file where the length of each record precedes the record data and is readable using
the Binary Access Method[2]. The log file name is generated from a mask and is based
on a sequence and / or a time stamp. The RDW log file may be automatically managed
in that the file is written out in segments when some threshold is reached or on receiving
a specified signal.

If a target process is restarted there is the option to run a notify process in order to notify
a person or process outside of the normal log output of cmlkeep. The notify process
may be an executable or a shell script and is started with its standard input connected to
a pipe to which cmlkeep writes a message detailing the fault followed by the contents
of a file if specified as a start up option on the command line. Examples of such a notify
process would be to email, text or page support personnel.

Under some circumstances a target process may be deemed to complete normally. A
normal completion of a target process may require a restart or a halt to the restart cycle
of the target process. There are command line options to allow any combination of

Code Magus Limited 3 CML00092-01

1.2 Monitoring jobs 1 INTRODUCTION

halt or restart by specifying the return code or termination signal produced by the target
process. If the conditions require a restart the notification process is not executed and the
target process is silently restarted. If it requires a halt of the restart cycle then cmlkeep
will gracefully end and not restart the target process any more.

1.2 Monitoring jobs

The Code Magus tool cmljobs allows a user to check any job running under the
control of cmlkeep. It can also be used for administration of the keep system. For
example in the event that both cmlkeep and the target process are terminated by an
external agent, cmljobs can be used to clean up or remove the reference to the job.

1.3 Signalling jobs

The Code Magus tool cmlkill operates in a similar way to the Linux utility kill in
that it can send a signal to a target process. The job is named by its name rather than
having to use the Process Identifier (PID).

Code Magus Limited 4 CML00092-01

2 JOB KEEP ALIVE PROCESSING

2 Job Keep alive Processing

2.1 Introduction

The Code Magus Keep Alive program cmlkeep is a way to run a target process referred
to by a job name rather than a PID. Specifically its main purpose is to make sure that
the target process is always running. This is important for a number of reasons such as

• Restarting a target process if it terminates abnormally.

• Restarting a target process if an out side agent terminates the target process with a
signal. On Linux this could happen if the overall memory usage exceeds a set limit
causing the ‘Out of Memory Killer’ (OOM Killer) to kill (abnormally terminate)
any process in order to regain the memory.

• A target process needs to be recycled in order for it to restart with an updated
configuration.

• A target process needs to be gracefully shut down, possibly for a machine reboot.

An instance of a cmlkeep job can be configured such that all of the above points can
be supported.

2.2 Command line parameters

If cmlkeep is started with the --help option it will only print help about the com-
mand line options with a short description of each as follows.

Usage: cmlkeep [OPTIONS]* -- <Target-Process-program> [args]*
If there are no OPTIONS then -- can be omitted.
For try-harder-to-restart: Attempt this many extra
restart windows, with an incremented delay between
successive ones (increment is --restart-window)
Note: -1 means forever

-j, --job-name=<string> Job name (must be unique)
-t, --title=<string> Title of this keep alive

process
-s, --sleep={10|<seconds>} Sleep time before restarting

the Target-Process
-n, --notify-command=<command> Notify command to run when

Target-Process ends
-f, --notify-file=<text-file> File of text passed as

standard in to the notify
command

-m, --restart-max={5|<integer>} Maximum times allowed to
restart in restart window

-w, --restart-window={60|<seconds>} Restart window length

Code Magus Limited 5 CML00092-01

2.2 Command line parameters 2 JOB KEEP ALIVE PROCESSING

-y, --try-harder-to-restart={0|-1|<attempts>} Try harder to restart.
-e, --normal-exit-rc=<integer> Exit if Target-Process ends

with this return code
-r, --normal-restart-rc=<integer> Restart Target-Process, with

no notification, if it
ends with this return code

-E, --normal-exit-signal=<integer> Exit if Target-Process
ends with this signal

-R, --normal-restart-signal=<integer> Restart Target-Process, with
no notification, if it
ends with this signal

-H, --hup Do not ignore SIGHUP
-k, --keep-log-spec={stderr|<am>(<obj>[,<opts>])} AM open string for cmlkeep

progress log
-l, --log-file={<filename>|<pattern>} Pattern for log file name

and path to which to log
Target-process standard
output and error to

-T, --log-name-strftime Use strftime on log name
pattern string

-B, --log-segment-bytes=<byte-count> Log segments switched after
byte count reached

-S, --log-segment-seconds=<seconds> Log segments switched after
time in seconds expires

-C, --log-segment-records=<records> Log segments switched after
record count reached

-I, --log-segment-signal={0|<signum>} Log segments switched on
reciept of signal

-F, --log-flush-writes Log stream to be flushed
after each write

-O, --do-not-capture-output Do not capture standard
output and error from the
Target-Process

-J, --print-job-directory Print the job directory only
-v, --verbose Verbose processing mode

Help options:
-?, --help Show this help message

--usage Display brief usage message

These parameters or options are further explained in the following sections.

2.2.1 -j, –job-name

-j, --job-name=<string>

This option is the job name of the target process invoked by cmlkeep. It must be
unique across all jobs that are invoked by cmlkeep. It is possible to configure a
cmlkeep environment such that it uses more than one job base, but is not recom-
mended. This job name is used by both cmljobs and cmlkill to refer to the job

Code Magus Limited 6 CML00092-01

2.2 Command line parameters 2 JOB KEEP ALIVE PROCESSING

running this target process.

2.2.2 -t, –title

-t, --title=<string>

This option specifies the title of the job and is useful when reporting on jobs or diagnos-
ing problems to do with it.

2.2.3 -s, –sleep

-s, --sleep={10|<seconds>}

This option specifies the time in seconds that cmlkeep will wait (or sleep) before
restarting the target process.

2.2.4 -n, –notify-command

-n, --notify-command=<command>

This option specifies the name of a notify process that will be executed when a target
process is restarted due to an abnormal termination. A message detailing the reason for
the restart is made available to the notify process through its standard input stream.

Generally the notify process reads from its standard input and notifies support via some
mechanism. A good example on Linux is to use mutt to email the message to a number
of recipients. The command would look like this

--notify-command="mutt -s \ ’Error: Application MyApp on \
machine.domain.com has restarted’ support@company.com"

2.2.5 -f, –notify-file

-f, --notify-file=<text-file>

This option names a file of text that is made available to the notify process on its stan-
dard input stream after the generated message. This text is the same for every restart
and could include company or support contact details or support action notes for the
application that has been restarted.

Code Magus Limited 7 CML00092-01

2.2 Command line parameters 2 JOB KEEP ALIVE PROCESSING

2.2.6 -m, –restart-max

-m, --restart-max={5|<integer>}

This option specifies the maximum number of times a target process can be restarted in
the --restart-window. If this number is exceeded the restart cycle is halted and
the notify message will be changed to indicate this.

2.2.7 -w, –restart-window

-w, --restart-window={60|<seconds>}

This option specifies in seconds the span of the restart window. Note that the time
specified in --sleep needs to be factored in to the time it takes for a target process to
restart and terminate.

2.2.8 -y, –try-harder-to-restart

-y, --try-harder-to-restart={0|-1|<attempts>}

This option is only used in the scenario where a target process fails immediately and

repeatedly more than --restart-max times within --restart-window seconds.

There are three ways that this option can be used. They are

1. Specify a value of zero (the default)

This is the normal or default value for this option. When used and this restart
scenario occurs cmlkeep will not attempt another restart and will terminate.

2. Specify a positive integer.

If this option is set to a value greater than zero then cmlkeep will attempt this
many extra successive restart windows in an attempt to successfully restart the
target process.

It will wait --restart-window seconds more between each restart window
in the hope that this will allow a sysadmin to rectify the situation that is caus-
ing the target process not to start. In other words the rate of restart is slowed
by --restart-window seconds more as successive restart windows are at-
tempted. If the target process starts successfully then this history of successive
restart windows is reset back to the original value.

A usual cause is for example when a file system fills up and a target process can
not write an output file and therefore ends; on restart by cmlkeep it again can
not write the log file and again terminates. This then starts the cycle of immediate

Code Magus Limited 8 CML00092-01

2.2 Command line parameters 2 JOB KEEP ALIVE PROCESSING

restarts within a restart window and possibly successive restart windows. Once
a sysadmin has rectified the situation (made space available) cmlkeep will suc-
cessfully restart the target process and the restart window history is discarded and
reset to the initial value.

3. Specify any negative integer.

If this option is set to a negative integer then cmlkeep will continuously attempt
to restart the target process.

It still uses the concept of the restart window time, but the wait between each
window is initially set to --restart-window and only increased by 1 second
each time.

2.2.9 -e, –normal-exit-rc

-e, --normal-exit-rc=<integer>

This option specifies an integer and if the target process ends with a return code equal
to this the restart cycle will be halted and cmlkeep will gracefully end. If this option
is not specified then the target process will always be restarted if it terminates with any
return code.

Normally cmlkeep would restart the target process each time it ends, but under some
circumstances the target process may need to be correctly shutdown or stopped with no
desire to have it restarted. An example could be a network interface that is only required
to be active during certain hours. At the end time it (and cmlkeep) can be gracefully
shutdown by ending the program with a specific return code.

2.2.10 -r, –normal-restart-rc

-r, --normal-restart-rc=<integer>

This option specifies an integer and if the target process ends with a return code equal
to this it will be silently restarted; that is the notification process is not executed. If this
option is not specified then the notification process, if specified, will always be executed
when the target processis restarted due to ending with any return code.

Normally if the target process ends unexpectedly then a notification is sent to indicate
that some error occurred and the target process has been restarted. However a server may
be restarted in order for it to read a new configuration and is programmed to terminate
with a specific return code to indicate this. In this example cmlkeep would restart the
target process without notification.

Code Magus Limited 9 CML00092-01

2.2 Command line parameters 2 JOB KEEP ALIVE PROCESSING

2.2.11 -E, –normal-exit-signal

-E, --normal-exit-signal=<integer>

This option specifies an integer and if the target process is terminated with a signal
whose value is equal to this the restart cycle will be halted and cmlkeepwill gracefully
end. If this option is not specified then the target process will always be restarted if it is
terminated through receiving a signal.

Normally cmlkeep would restart the target process each time it ends, but under some
circumstances the target process may need to be correctly shutdown or stopped with no
desire to have it restarted. An example could be a network interface that is only required
to be active during certain hours. At the end time it (and cmlkeep) can be gracefully
shutdown by ending the program with a specific signal.

2.2.12 -R, –normal-restart-signal

-R, --normal-restart-signal=<integer>

This option specifies an integer and if the target process is terminated with a signal
whose value is equal to this it will be silently restarted; that is the notification process
is not executed. If this option is not specified then the notification process, if specified,
will always be executed when the target process is restarted due to a signal terminating
it.

Normally if the target process ends unexpectedly then a notification is sent to indicate
that some error occurred and the target process has been restarted. However a server may
be restarted in order for it to read a new configuration and is programmed to terminate
when it receives a specific signal. In this example cmlkeep would restart the target
process without notification.

2.2.13 -H, –hup

-H, --hup

The shell invoking cmlkeep (and thus the target process) would normally send a
SIGHUP signal to cmlkeep if it ends prematurely. As the default action of SIGHUP
is to terminate the process, cmlkeep normally makes itself immune to hangups be-
fore invoking the target process. This means that there is no requirement to usually run
cmlkeep with the nohup command.

If this behaviour is not required then specifying this option will leave the default be-
haviour of SIGHUP as is.

Code Magus Limited 10 CML00092-01

2.2 Command line parameters 2 JOB KEEP ALIVE PROCESSING

2.2.14 -k, –keep-log-spec

-k, --keep-log-spec={stderr|<am>(<obj>[,<opts>])}

Diagnostic and status messages generated by cmlkeep are, by default, written to stan-
dard error. Use this option to write these messages to a different location by using a
recio access method open string. If the open of the (recio) destination fails the sys-
tem automatically reverts to standard error.

2.2.15 -l, –log-file

-l, --log-file=<filename>|<pattern>

If this option is specified it should be a mask that when completed names a log file to
which all the output (standard output and error) of the target process is written to. If it
is not specified then all output from the target process is written using the Code Magus
rprintf[1] whose default destination is standard error.

As a mask the default behaviour is to suffix the supplied pattern name with the process
id and a serial number indicating the current segment of the log being processed. This
behaviour can be changed by using the other options that pertain to the log file as shown
below.

The log file is line buffered and each record (or line) is written out as a single entity.

2.2.16 -T, –log-name-strftime

-T, --log-name-strftime

This option allows a user to supply --log-file as a pattern that conforms to the C
runtime functions strftime(). The caller can use variables to substitute date
and times into the name. For a comprehensive list of substitution variables see the C
manual on the target platform. A list of the more commonly ones follows.

• %d The day of the month as a decimal number (range 01 to 31).

• %H The hour as a decimal number using a 24-hour clock (range 00 to 23).

• %m The month as a decimal number (range 01 to 12).

• %M The minute as a decimal number (range 00 to 59).

• %s The number of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).
(TZ)

• %S The second as a decimal number (range 00 to 60). (The range is up to 60 to
allow for occasional leap seconds.)

Code Magus Limited 11 CML00092-01

2.2 Command line parameters 2 JOB KEEP ALIVE PROCESSING

• %Y The year as a decimal number including the century.

• %% A literal ’%’ character.

2.2.17 -B, –log-segment-bytes

-B, --log-segment-bytes=<byte-count>

If this option is specified then the log file is segmented or partitioned. This means that
if the threshold of byte-count is exceeded while writing a record then the log file
segment is closed and a new one is opened. One or more of the segmentation options can
be specified together; each time a threshold is exceeded a new log segment is written.

2.2.18 -S, –log-segment-seconds

-S, --log-segment-seconds=<seconds>

If this option is specified then the log file is segmented or partitioned. This means that
if the threshold of seconds since the segment was opened is exceeded while writing
a record then the log file segment is closed and a new one is opened. One or more of
the segmentation options can be specified together; each time a threshold is exceeded a
new log segment is written.

2.2.19 -C, –log-segment-records

-C, --log-segment-records=<records>

If this option is specified then the log file is segmented or partitioned. This means that if
the threshold of records is exceeded while writing a record then the log file segment
is closed and a new one is opened. One or more of the segmentation options can be
specified together; each time a threshold is exceeded a new log segment is written.

2.2.20 -I, –log-segment-signal

-I, --log-segment-signal={0|<signum>}

If this option is specified then the log file is segmented or partitioned. This means that if
cmlkeep receives this signal it will, before the next record is written, close the current
file segment and open a new one. One or more of the segmentation options can be
specified together; each time a threshold is exceeded a new log segment is written.

Code Magus Limited 12 CML00092-01

2.2 Command line parameters 2 JOB KEEP ALIVE PROCESSING

2.2.21 -F, –log-flush-writes

-F, --log-flush-writes

If this option is specified then the each write to the RDW log file is flushed immediately.
This effectively bypasses the standard stream buffering and is useful when running a job
for diagnosis as the output is not lost in a buffer when the job aborts.

2.2.22 -O, –do-not-capture-output

-O, --do-not-capture-output

If this option is specified then no output from the target process will be captured. Note
that any redirection in place during the invocation of cmlkeep to invoke the target
process will affect the output of the target process.

2.2.23 -J, –print-job-directory

-J, --print-job-directory

If this option is set cmlkeep does not start a target process, even if other options are
set, but will print to standard out the name of the directory that holds the job control
information. This allows a system administrator to quickly find the directory used or for
this option to be used in an automated script to find the directory.

An example of using this is in a machine start up script like rc.local on Linux. At
start up it is best to clear all job information from this directory. This can only be done
if the script can obtain the name used.

2.2.24 -v, –verbose

-v, --verbose

If this option is specified once verbose diagnostic output will be produced by cmlkeep
and if specified twice then both verbose and trace diagnostic output will be produced.

2.2.25 -?, –help

-?, --help

If this option is specified then no processing takes place and a list of options and short
descriptions are printed on the terminal.

Code Magus Limited 13 CML00092-01

2.3 Starting a Job 2 JOB KEEP ALIVE PROCESSING

2.2.26 –usage

--usage

As with --help but much more concise with no descriptions.

2.3 Starting a Job

A job is started by executing cmlkeep and passing it options for itself followed by
‘--’ (dash dash), the target process fully qualified program name, followed in turn by
the options to pass to the target process.

For example to start program cmlserverwith the options ‘--port 1024 --instances 10’
the following command could be used.

cmlkeep --job-name=CMLSERVER1 \
--title="Code Magus Server Instance 1"
--sleep=240 \
--notify-command="mutt -s ’CMLINST 1 Error’ help@codemagus.com" \
--notify-file=/home/codemagus/email.txt \
--restart-window=800 --restart-max=3 \
--normal-exit-rc=0 --normal-restart-signal=10 \
--normal-exit-signal=12 \
--log-file=/home/codemagus/cmlserver1 \
-- \
cmlserver \

--port 1024 --instances 10

The signal values 10 (SIGUSR1) and 12 (SIGUSR2) are convenient to use on Linux as
a way of gracefully restarting or shutting down the target process as both signals have
a default of terminating the process. Of course it depends on the application as to how
it is shut down; others may trap different signals (like SIGINT) for shutdown or even
ignore SIGUSR1 and SIGUSR2, while others may have a networked interface to the
application.

Also see the documentation for the kill program for the signal values on other Unix
platforms.

If there is no need to change the default options to cmlkeep then the invocation could
simply be

cmlkeep cmlserver --port 1024 --instances 10

In this instance it is not necessary to use the ‘--’ to separate the options to cmlkeep
and the name of the target process program. Here the job name will be cmlserver, it
will have no title and no notification (other than cmlkeep writing to its log) will occur
on a restart and no normal restart end return codes or signals will be defined.

Code Magus Limited 14 CML00092-01

2.4 Tuning excessive target process restarts 2 JOB KEEP ALIVE PROCESSING

2.4 Tuning excessive target process restarts

It is always difficult for software like cmlkeep to restart a target process that has failed
or ended in a considered manner as cmlkeepmay not have all the information required
to make (an informed) decision.

There are two scenarios that are always in opposition as to the effect of the rules gov-
erning the restart of a target process. The first is that there is a fault in the target process
and it repeatedly, and usually immediately, fails; and the second is that some outside
influence causes the target process to fail at some point and then be unable to restart
successfully. Both scenarios cause repeated restarts.

The first scenario requires that the restart process be stopped until the program is fixed
and the second that the external problem be fixed while repeated restart of the target
process is temporarily suspended or slowed down.

For example if a file system should fill up the impact on all jobs and the system could be
catastrophic. In the first scenario, if a target process repeatedly fails on start up it may
write one or more log messages and if this process continues it could fill the file system.
Conversely if a rogue application fills the file system a target process, under the control
of cmlkeep, may end when it receives an error while writing to an output file and then
immediately fail on restarting; in this scenario it would be best to slow the restart rate
down, but keep trying until the file system space problem is resolved.

The parameters -m , --restart-max and -w, --restart-window can be
used to limit the number of successive immediate restarts a target process undergoes.
However, this means that if cmlkeep attempts to restart the target process this often
in the given time window it will give up and end. This is the same for both scenarios
described above.

For the second scenario above it may not be desirable for cmlkeep to give up and end
once the external problem is resolved it should still be trying to restart the target process.

To mitigate against cmlkeep giving up, the parameter -y, --try-harder-to-restart
can be used. This is set to an integer; either negative, zero or positive. See the descrip-
tion of this parameter for the meaning when it is negative or zero. If it is positive then
cmlkeep will allow this many successive windows of retries to be performed. It will
also attempt to slow the process down by incrementing a wait between each successive
window by adding the --restart-window number of seconds. It will count down
the number of these successive windows and once it has used them all, will give up. If
the target process is started up successfully and stays active for a long period then the
countdown of these successive windows is reset to the original value.

Tuning these various parameters can be tricky and should be approached with care. It
should be noted that along with these parameters the system administrator should also
use the --notify-command to notify the relevant support personnel about any prob-
lems. Repeated immediate restarts and successive restart windows should be resolved

Code Magus Limited 15 CML00092-01

2.4 Tuning excessive target process restarts 2 JOB KEEP ALIVE PROCESSING

as quickly as possible.

Code Magus Limited 16 CML00092-01

3 JOB MONITORING

3 Job Monitoring

3.1 Introduction

Code Magus cmljobs allows a user to monitor jobs started with cmlkeep.

3.2 Command line parameters

If cmljobs is started with the --help option it will only print help about the com-
mand line options with a short description of each as follows.

Usage: cmljobs [OPTION...]
-j, --job-name=<string> Check Status of a specific Job name
-d, --delete Remove the job reference (if job not running)
-S, --silent Do not write to stderr|stdout
-v, --verbose Verbose processing mode

Help options:
-?, --help Show this help message

--usage Display brief usage message

These parameters or options are further explained in the following sections.

3.2.1 -j, –job-name

-j, --job-name=<string>

This option is the name of the job as known to cmljobs and is the job name used when
the job was started by cmlkeep. If this option is not given all jobs are checked.

3.2.2 -d, –delete

-d, --delete

This option can only be specified if --job-name is also specified. This option can be
used to remove an orphaned reference to a target process if the target process is no longer
running. This scenario could happen if both cmlkeep and the target process were
terminated by some outside agent, leaving the reference to the job orphaned. cmljobs
will attempt to remove the job reference after checking that the target process is not
currently executing.

The job reference is a text file that holds the Process ID (PID) of the target process that
was invoked by cmlkeep. There is a possibility that when a job reference is orphaned
the system may reuse the same PID for another job not related to cmlkeep. In this
instance cmljobs will not clean up the reference and manual intervention is required.

Code Magus Limited 17 CML00092-01

3.3 Monitoring a Job 3 JOB MONITORING

3.2.3 -S, –silent

-S, --silent

If this option is specified the cmljobs will produce little or no diagnostic output; If
--job-name was not specified then only the list of known jobs is printed to standard
out, but if --job-name was specified then no output is produced and only the return
code will indicate the status of the job.

3.2.4 -v, –verbose

-v, --verbose

If this option is specified once verbose diagnostic output will be produced by cmljobs
and if specified twice then both verbose and trace diagnostic output will be produced.

3.2.5 -?, –help

-?, --help

If this option is specified then no processing takes place and a list of options and short
descriptions are printed on the terminal.

3.2.6 –usage

--usage

As with --help but much more concise with no descriptions.

3.3 Monitoring a Job

To get a list of jobs currently under the control of cmlkeep execute cmljobs and do
not specify --job-name. This will then produce a list of jobs.

To get the status of a specific job then specify --job-name with the name of the job.
The return code from cmljobs indicates the status of the job.

• Return Code 0. The job is known to to cmlkeep and currently running.

• Return code 4. The job is not known to cmlkeep and as such is not currently
running.

• Return code 8. The job is known to cmlkeep but there is no target process
running with the associated PID. In other words this is an orphaned job.

Code Magus Limited 18 CML00092-01

3.3 Monitoring a Job 3 JOB MONITORING

• Return code 16. A processing error has occurred. See the messages produced for
an indication of why and what action can be taken.

Code Magus Limited 19 CML00092-01

4 SIGNALLING A JOB

4 Signalling a Job

4.1 Introduction

Code Magus cmlkill performs a similar function to the Linux / Unix kill(1) com-
mand in that it allows a user to send a signal. It is mostly used to send a signal to a job
(the target process)that was started through cmlkeep, but may also be used to send a
signal to cmlkeep. It differs to kill in that the user refers to the job name rather
than the process ID of the target process, which helps to eliminate errors when sending
critical signals to a job. All the signals that can be sent via the Unix command kill
may be delivered via cmlkill.

Signals to cmlkeep are used mainly for causing a log switch for jobs running with
logging and a log switch signal number specified.

4.2 Command line parameters

If cmlkill is started with the --help option it will only print help about the com-
mand line options with a short description of each as follows.

Usage: cmlkill [OPTION...]
-j, --job-name=<string> Job name (must be unique)
-k, --cmlkeep Send the signal to the keep process (not

the target process)
-s, --signal={SIGKILL|<signal>} Signal to send
-S, --silent Do not write to stderr|stdout
-v, --verbose Verbose processing mode

Help options:
-?, --help Show this help message

--usage Display brief usage message

These parameters or options are further explained in the following sections.

4.2.1 -j, –job-name

-j, --job-name=<string>

This mandatory option is the name of the job as known to cmljobs and is the job name
used when the job was started by cmlkeep.

4.2.2 -k, –cmlkeep

-k, --cmlkeep

Code Magus Limited 20 CML00092-01

4.2 Command line parameters 4 SIGNALLING A JOB

Send the signal to the keep process (not the target process). This option allows a signal
to be delivered to the parent cmlkeep process and is most often used to cause a log
switch.

4.2.3 -s, –signal

-s, --signal={SIGKILL|<signal>}

This mandatory option is the signal number or name that is to be sent to the target pro-
cess of the job named in --job-name. The signal can be specified by number, short
name (e.g. INT) or long name (e.g. SIGINT). See the Linux command ‘kill’ -l
for the names and numbers of the signals. These signals are specific to the operating
system and may differ between Linux and Unix systems.

4.2.4 -S, –silent

-S, --silent

If this option is specified the cmljobs will produce no diagnostic output;

4.2.5 -v, –verbose

-v, --verbose

If this option is specified once verbose diagnostic output will be produced by cmljobs
and if specified twice then both verbose and trace diagnostic output will be produced.

4.2.6 -?, –help

-?, --help

If this option is specified then no processing takes place and a list of options and short
descriptions are printed on the terminal.

4.2.7 –usage

--usage

As with --help but much more concise with no descriptions.

Code Magus Limited 21 CML00092-01

4.3 Signalling Examples REFERENCES

4.3 Signalling Examples

To send an interrupt signal to the target process of a job called BATCHRUN use the
following command:

cmlkill -j BATCHRUN -s INT
..or..
cmlkill -j BATCHRUN -s sigint
..or..
cmlkill -j BATCHRUN -s 2

To cause a log switch of the cmlkeep log where the signal is specified as 10 (or
SIGUSR1) use the following command:

cmlkill -k -j BATCHRUN -s USR1

References

[1] rprintf API: User Guide and Reference Version 1. CML Document CML00002-01,
Code Magus Limited, July 2008. PDF.

[2] binary: Fixed and Variable Length Record Stream Access Method Version 1. CML
Document CML00005-01, Code Magus Limited, July 2008. PDF.

Code Magus Limited 22 CML00092-01

http://www.codemagus.com/documents/rprintf_CML0000201.pdf
http://www.codemagus.com/documents/binaryam_CML0000601.pdf

	1 Introduction
	1.1 Keep Alive
	1.2 Monitoring jobs
	1.3 Signalling jobs

	2 Job Keep alive Processing
	2.1 Introduction
	2.2 Command line parameters
	2.2.1 -j, –job-name
	2.2.2 -t, –title
	2.2.3 -s, –sleep
	2.2.4 -n, –notify-command
	2.2.5 -f, –notify-file
	2.2.6 -m, –restart-max
	2.2.7 -w, –restart-window
	2.2.8 -y, –try-harder-to-restart
	2.2.9 -e, –normal-exit-rc
	2.2.10 -r, –normal-restart-rc
	2.2.11 -E, –normal-exit-signal
	2.2.12 -R, –normal-restart-signal
	2.2.13 -H, –hup
	2.2.14 -k, –keep-log-spec
	2.2.15 -l, –log-file
	2.2.16 -T, –log-name-strftime
	2.2.17 -B, –log-segment-bytes
	2.2.18 -S, –log-segment-seconds
	2.2.19 -C, –log-segment-records
	2.2.20 -I, –log-segment-signal
	2.2.21 -F, –log-flush-writes
	2.2.22 -O, –do-not-capture-output
	2.2.23 -J, –print-job-directory
	2.2.24 -v, –verbose
	2.2.25 -?, –help
	2.2.26 –usage

	2.3 Starting a Job
	2.4 Tuning excessive target process restarts

	3 Job Monitoring
	3.1 Introduction
	3.2 Command line parameters
	3.2.1 -j, –job-name
	3.2.2 -d, –delete
	3.2.3 -S, –silent
	3.2.4 -v, –verbose
	3.2.5 -?, –help
	3.2.6 –usage

	3.3 Monitoring a Job

	4 Signalling a Job
	4.1 Introduction
	4.2 Command line parameters
	4.2.1 -j, –job-name
	4.2.2 -k, –cmlkeep
	4.2.3 -s, –signal
	4.2.4 -S, –silent
	4.2.5 -v, –verbose
	4.2.6 -?, –help
	4.2.7 –usage

	4.3 Signalling Examples

